
Computer System Programming

1. Course number and name: 020PSYES5 Computer System Programming

2. Credits and contact hours: 4 ECTS credits, 35 contact hours (lectures + labs)

3. Instructor’s or course coordinator’s name: Maroun Chamoun

4. Text book:

a. Other supplemental materials:

Handouts posted on the Web.

5. Specific course information

a. Catalog description:

Program development and object code structure - UNIX introduction - UNIX file

systems and low-level I/O - Signals and signal handlers - I/O redirection and pipes

- Process management - System V IPC (Inter-process communication) and

synchronization: semaphores, message queues, shared memory- Networking and

Berkeley Socket Programming.

b. Prerequisites: 020POOES1 Object-Oriented Programming, 020SSEES3

Operating Systems

c. Required: Elective for CCE students; required for CCE software engineering

option students

6. Specific goals for the course

The goal of this course is to provide an in-depth introduction to a systems programming,

system programming language(s) and application of those language(s) to systems level

problems.

a. Specific outcomes of instruction:

- Become familiar with the basic tools used to develop software in C on the Unix

platform.

- Exhibit proficiency in the use of the C programming language to design and

code systems-related programs.

- Design and implement programs making direct use of operating system

facilities to perform low-level file I/O and directory manipulations.

- Use a modern OS API and the concepts of process creation, synchronization &

communication to solve concurrent programming problems.

- Become familiar with socket programming using the Berkeley socket API

b. KPI addressed by the course:

KPI a2 e3 k2

Covered x x x

Assessed x x x

7. Topics and approximate lecture hours:

- Introduction: Fundamental concepts, Historical Introduction to UNIX, System calls

and library functions, Error handling, System data types, Tools and Compilation: C

compiler, compiling & linking, creating and using static libraries, creating and using

shared libraries, introduction to make (3 lectures)

- Lab: Best practices in C programming (1:15 lab hours)

- File I/O: I/O system calls versus stdio, File descriptors, I/O system calls: open(),

close(), read(), write(), Seeking to a file offset: lseek(); file holes, Atomicity and race

conditions, Relationship between file descriptors and open files, Duplicating file

descriptors, File control: fcntl(), Open file status flags, Other file I/O APIs, File

attributes, Retrieving file information: stat(), Changing file attributes, Directories and

links, Hard and soft (symbolic) links, Directories: Current working directory, System

calls and library functions for working with directories and links, Working with

pathnames, Scanning directories; walking directory trees (3 lectures)

- Lab: Files (1:15 lab hours)

- Processes: Process ID and Parent process ID, Command-line arguments, Environment

list, Process groups, sessions, and job control, Process creation and termination:

Process creation: fork(), File descriptors and fork(), Process termination: exit() and

_exit(), Exit handlers, Monitoring child processes: wait(), waitpid(), waitid(),

Executing programs: execve(), exec() library functions, File descriptors and exec() (3

lectures)

- Signals: Signal types and default actions, Setting signal dispositions, Signal handlers,

Signal sets, Blocking signals (the signal mask); pending signals, Sending signals,

Designing signal handlers (2 lectures)

- Lab: Processes and signals (1:15 lab hours)

- Pipes and FIFOs: Creating and using pipes, Using pipes to connect filters, FIFOs,

Semantics of I/O on pipes and FIFOs (2 lectures)

- Lab: Communication using pipes (1:15 lab hours)

- System V IPC: Introduction to IPC, semaphores: Semaphore operations, synchronizing

access to a shared resource, shared memory: using shared memory objects,

synchronizing access to shared memory, message queues: Message queue attributes,

sending and receiving messages (3 lectures)

- Lab: Communication using message queues (1:15 lab hours)

- Lab: Communication using shared memory (1:15 lab hours)

- Lab: synchronizing access to a shared resource using semaphores (1:15 lab hours)

- BSD sockets: Introduction to sockets, Socket types and domains, Sockets system calls,

Stream sockets, Datagram sockets, UNIX Domain sockets: Stream and datagram

sockets in the UNIX domain, Socket permissions, Creating a socket pair: socketpair(),

Internet domain sockets: TCP/IP fundamentals, Protocols and layers: IP, UDP, and

TCP, IP addresses, Port numbers, Internet socket addresses, Data representation issues,

Client-server example, Concurrent versus iterative server design, recv() and send()

system calls, Socket options (3 lectures)

- Lab: Communication using Datagram sockets (1:15 lab hours)

- Lab: Communication using Stream sockets (1:15 lab hours)

