Course Syllabus

- 1. Course number and name: 020AN2CI3 Analysis 2.
- 2. Credits and contact hours : 6 ECTS credits, 5x1:15 course hours
- 3. Instructor's or course coordinator's name : William Habre
- 4. Text book :
 - a. other supplemental materials : Professor Notes
- 5. Specific course information
 - i. Catalog description: Normed vector spaces: continuity, uniform continuity and Lipchitz continuity, compactness, linear maps, path connectedness – Generalized integrals: tests of convergence, dominated convergence -Functions of several variables: directional and partial derivatives, differentiability, gradient, extrema of functions of several variables, differential forms, multiple integrals, line integrals.
 - ii. Prerequisites: Analysis 1 (020AN1CI2)
 - iii. Required : Yes
- 6. Specific goals for the course
 - a. Specific outcomes of instruction
 - Identify, construct, manipulate, compare and classify norms.
 - Study and identify topologies over a normed vector space.
 - Identify open, closed, bounded, unbounded, convex, and arc-connected subsets.
 - Characterize differentiable and integrable functions.
 - Manipulate lebesgue theorems.
 - b. KPIs addressed by the course.

RAP (KPI)	a1
Covered	Х
Assessed	Х
Give Feedback	Х

- 7. Topics and approximate lecture hours :
 - Normed vector spaces: Norms, Geometry of normed vector spaces, topology defined by norms, continuity of applications between 2 normed vector spaces, inner products and norms. (34 Lectures)
 - Differential and integral calculus: Derivatives, approximation of function with real variable, integration and differentiation. Taylor formula, Lebesgues convergence theorems, Euler gamma and beta functions. (34 Lectures)