Course Syllabus

- 1. Course number and name: 020EMENI3 Electromagnetism
- **2.** Credits and contact hours: 4 ECTS credits, 2x1:15 course hours
- 3. Instructor's or course coordinator's name: Rémi Z. DAOU
- 4. Text book: Physique tout-en-un MP, Salamito, J'intègre-Dunod, 2014
- 5. Specific course information
 - **a. catalog description:** This course starts with a separate study in the stationary case of the electric and the magnetic fields. Geometrical symmetries are used to benefit from the properties of the flux and the circulation of a vector field. Stationary local equations are introduced as a special case of Maxwell equations. After a presentation of the Maxwell equations and the electromagnetic (EM) energy, attention is focused on the propagation of EM waves in vacuum and conductors.
 - **b. prerequisites or co-requisites:** 020SPHNI1 Physical Signals 020AGNNI1 General Analysis
 - c. Required/Elective/Selected Elective: Required
- 6. Specific goals for the course
 - a. Specific outcomes of instruction:
 - Master the notions of scalar and vector fields
 - Conduct invariance and symmetry analyses and evaluate fields using properties of their flux and their circulation
 - State the laws of electrodynamics in local and integral form
 - Conduct energy balance between EM field and matter
 - Describe the propagation of EM waves in vacuum
 - b. KPIs addressed by the course:

KPI	a1	a2	b1	b2	b3
Covered	X				
Assessed	X				
Give Feedback	X				

7. Brief list of topics to be covered and approximate number of lectures:

- 1. Stationary electric field and dipole (7 lectures)
- 2. Stationary magnetic field and dipole (5 lectures)
- 3. Maxwell equations (5 lectures)
- 4. Electromagnetic Energy (3 lectures)
- 5. Propagation of electromagnetic waves in vacuum (4 lectures)
- 6. Electromagnetic waves in conductors (4 lectures)