Course Syllabus

- 1. Course number and name: 020IF1CI2 Programming 1
- 2. Credits and contact hours: 4 ECTS credits, 3x1:15 course hours
- 3. Instructor's or course coordinator's name: Tony Nicolas
- 4. Text book, title, author, and year
 - a. other supplemental materials: Professor textbook and course material
- 5. Specific course information
 - a. catalog description :

This course introduces computer structure and the basic principles of high-level programming using Python. It provides the necessary understanding and skills to design algorithms and translate them to computer programs using the following concepts: variables and primitive datatypes, simple statements for basic calculations, control statements for decision making or looping, built-in composite datatypes, integrated and user-defined functions with a glimpse on recursion. This course also covers numerical methods like root finding methods (Newton, Secant, etc.), file management, and an overview on mathematical modules (numpy, scipy, matplotlib).

- b. prerequisites : None
- c. Required/Elective/Selected Elective: Required
- 6. Specific goals for the course
 - a. Specific outcomes of instruction:
 - Recognize the roles of main computer components
 - Design and construct algorithms to solve scientific problems
 - Translate algorithms into computer programs
 - Define and use variables of different data types
 - Identify and use the suitable control structure for a particular case
 - Identify the code to be modularized as functions
 - Define simple functions
 - Identify and analyze a recursive structure
 - Use a function defined in an external module
 - Determine and apply the appropriate method to find the root of a mathematical function
 - Use file management to save data to text files or to read data from text files
 - Solve mathematical problems using mathematical modules.

b. KPIs addressed by the course.

KPI	a1	k2
Covered	Х	Х
Assessed	Х	Х
Give Feedback	Х	Х

- 7. Topics and approximate lecture hours :
 - Introduction to computer programming, the elements of the universal computer, binarydecimal conversion (2 Lectures)
 - Introduction to Python, Pyzo, and simple statements using print function and arithmetic operators (1 Lecture)
 - Variables, expressions, data types, conversion between data types, input function (3 Lectures)
 - Logical tests and conditional control structures (3 Lectures)
 - Functions from external modules (1 Lecture)
 - Iterative control structures (while and for loops) (3 Lectures)
 - Function definition and call (2 Lectures)
 - Recursion (3 Lectures)
 - String object and its methods, their traversal, searching through them, selecting elements (3 lectures)
 - Lists and tuples and their methods, their traversal, searching through them, selecting elements, use recursion on list (6 Lectures)
 - Dictionaries and their methods, their traversal, searching through them, selecting elements (3 Lectures)
 - Numerical method (4 Lectures)
 - File management (2 Lectures)
 - Numpy/matplotlib, scipy modules (3 Lectures)
 - Supplementary exercises (3 Lectures)