Course Syllabus

- 1. Course number and name: 0200PTNI3 Wave Optics
- 2. Credits and contact hours: 2 ECTS credits, 2x1:15 course hours
- 3. Instructor's or course coordinator's name: Pascale ABBOUD
- **4. Textbook:** Physique tout-en-un MP, Salamito, J'intègre-Dunod, 2014
- 5. Specific course information
 - **a. catalog description:** Optical path length, Propagating waves, Malus theory, Complex representation of waves: Plane waves: sign convention, propagation directions, Spherical waves, Superposition of Waves, Division of Wavefront Interferometers (Young's Experiment), Division of Amplitude Interferometers (Michelson Interferometer)
 - **b. prerequisites:** 020SPHNI1 Physical Signals
 - c. Required/Elective/Selected Elective: Required
- 6. Specific goals for the course
 - a. specific outcomes of instruction
 - To learn the fundamental principles of classical physical optics.
 - Define the different type of waves.
 - Illustrate the principle of superposition
 - To describe Young's experiment using complex amplitudes and phasors
 - To be familiar with a range of equipment used in modern optics, particularly the Michelson interferometer.
 - To describe Fraunhofer diffraction.

b. KPIs addressed by the course:

KPI	a1	a2	b1	b2	b3
Covered	X		X		
Assessed	X				
Give Feedback	X				

7. Topics and approximate lecture hours:

- Optical path length, Propagating waves, Malus theory (6 Lecture)
- Complex representation of waves: Plane waves: sign convention, propagation directions, Spherical waves, Superposition of Waves (6 Lectures)
- Division of Wavefront Interferometers (Young's Experiment), (8 Lectures)
- Division of Amplitude Interferometers (Michelson Interferometer) (8 lectures)