Course Syllabus

- 1. Course number and name: 020SPHNI1 Physical Signals
- 2. Credits and contact hours: 6 ECTS credits, 3x1:15 course hours
- 3. Instructor's or course coordinator's name: Rémi Z. DAOU
- 4. Text book: Physique tout-en-un MPSI, Salamito, J'intègre-Dunod, 2013
- 5. Specific course information
 - **a. catalog description:** The course is concerned with a wide range of concepts already introduced at high school: periodic signals, spectrums, electrical energy, Ohm's law, Joule's law, lenses, wave length, light spectrum, numerical signal, travelling wave, diffraction, interferences, Doppler effect, Newton's law, mechanical energy, harmonic oscillator. A big effort is made to assure a smooth transition toward a more quantitative physics than the one seen at high school.
 - b. prerequisites or co-requisites: None
 - c. Required/Elective/Selected Elective: Required
- 6. Specific goals for the course
 - a. Specific outcomes of instruction:
 - Understand the role of a differential equation in the study of temporal evolution of a physical system
 - Analyze the representation of solutions in a phase portrait
 - Relate linearity and superposition
 - Identify and interpret the analytical expression of a propagating signal
 - Relate boundary conditions and quantification
 - Relate boundary conditions and decomposition in stationary waves
 - Identify similitudes in the behavior of analog systems by writing an equation in reduced non-dimensional variables and parameters
 - Support proofs and calculations by clear and precise graphics
 - b. KPIs addressed by the course:

KPI	a1	a2	b1	b2	b3
Covered	х		Х		
Assessed	Х				
Give Feedback	Х				

7. Brief list of topics to be covered and approximate number of lectures:

- 1. Harmonic oscillator (3 lectures)
- 2. Linear electric circuits in a quasi-stationary regime (5 lectures)
- 3. Linear electric circuits of first ordre (4 lectures)
- 4. Damped oscillator (3 lectures)
- 5. Sine signal and complexe notation (4 lectures)
- 6. Damped electric oscillator and resonance (4 lectures)
- 7. Linear electric filters (5 lectures)
- 8. Signal propagation (3 lectures)
- 9. Waves superposition and interference (3 lectures)
- 10. Light waves (3 lectures)
- 11. Geometrical optics (5 lectures)