Course Syllabus: Linear electrical systems and networks

- 1. Course number and name : 020SRLCI4 Linear electrical systems and networks
- 2. Credits and contact hours : 6 ECTS credits, 28x1:15 course hours + 12x2:30 lab hours
- 3. Instructor's or course coordinator's name : Alfred Hayek
- 4. Text book :
 - a. other supplemental materials : Professor textbook and course material
- 5. Specific course information
 - a. catalog description : Introduction to electrical engineering- Fundamentals of electric circuits- Resistive network analysis- AC Network analysis- Transient analysis- Frequency response and system concepts- Bode, Black and Nyquist diagrams
 - b. prerequisites : Physical Signals
 - c. Required :
- 6. Specific goals for the course
 - a. specific outcomes of instruction
 - Analyze a linear electric circuit
 - Master the use of voltage and current sources: extinction and establishment
 - Recognize the general theorems: superposition, substitution, Thévnin, Norton, Millemann and Kenelly.

- Calculate the different characteristics: voltage, current, power from general theorems

- Find the linear circuit transfer function and deduce its performance

- Master the use of Bode, Niquist and Black diagrams

- Studying the response of a linear electrical system to any given deterministic input by establishing the differential equation and applying the Laplace transform

b. KPIs addressed by the course.

KPI	a1	a2	b2	b3	e3	k2	k3	
Covered	Х	х	Х		Х	Х		
Assessed	Х	х	Х	Х	Х	Х	Х	
Give Feedback								

- 7. Topics and approximate lecture hours :
 - Signals and systems: Concept, definitions, random, deterministic, continuous and discrete signals. Quantities associated with a signal: instantaneous quantities, average value, average power and energy. Usual signals: periodic, alternate, rung, Dirac. Concept of System: Definition, examples of linear systems, natures and properties of systems (1 Lecture)
 - Linear systems- Response to a given excitation- Transfer function- Stability; Laplace transform, Definitions, Properties, Application to the resolution of linear differential equations with constant coefficients. Physical properties of response (6 Lectures)
 - Linear electrical networks: General topological definitions, dipole, network (branches, links, knot). Properties of electrical networks: Conventions of electricians. Kirchoff Laws: Electrical elementary dipoles, Sources (current, voltage) independent and related extinction of a source, passive dipoles (resistor, capacitor, coil) mutual inductance. Association of dipoles: Series, parallel, principle of duality. Aspect of the dipoles: Receiver and generator (3 Lectures)
 - General Theorems: Principle of superposition, substitution principle, Thevenin Voltage divider, Kenelly, Millmann Theorems, Theorems resulting from the Norton duality principle, current divider, substitution Millman (6 Lectures)
 - Permanent sinusoidal regime: Interest of steady state regime. Complex transformation, Equation of Linear Electrical Networks, complex impedance and admittance, energy considerations in sinusoidal regime, complex power, Boucherot theorem (6 Lectures)
 - Diagrams: Notion of transmittance (transfer function), Bode diagram, Black diagram, Nyquist diagram (6 Lectures)
 - Lab (12 Lectures).