Course Syllabus: Linear Electrical systems and networks

- 1. Course number and name: 020SRLNI4 Linear electrical systems and networks
- 2. Credits and contact hours: 6 ECTS credits, 28x1:15 course hours + 12x2:30 lab hours
- 3. Instructor's or course coordinator's name : Alfred Hayek
- 4. Text book:
 - a. other supplemental materials :Professor textbook and course material
- 5. Specific course information
 - a. catalog description:

Introduction to electrical engineering- Fundamentals of electric circuits- Resistive network analysis- AC Network analysis- Transient analysis- Frequency response and system concepts- Bode, Black and Nyquist diagrams

- b. prerequisites: Physical signals
- c. Required:
- 6. Specific goals for the course
 - a. specific outcomes of instruction
 - Analyze a linear electric circuit
 - Master the use of voltage and current sources: extinction and establishment
 - Recognize the general theorems: superposition, substitution, Thévnin, Norton, Millemann and Kenelly.
 - Calculate the different characteristics: voltage, current, power from general theorems
 - Find the linear circuit transfer function and deduce its performance
 - Master the use of Bode, Niquist and Black diagrams
 - Studying the response of a linear electrical system to any given deterministic input by establishing the differential equation and applying the Laplace transform
 - b. KPIs addressed by the course.

KPI	a1	a2	b2	b3	e3	k2	k3	
Covered	X	X	X		X	X		
Assessed	X	X	X	X	X	X	X	
Give Feedback								

7. Topics and approximate lecture hours:

- Signals and systems: Concept, definitions, random, deterministic, continuous and discrete signals. Quantities associated with a signal: instantaneous quantities, average value, average power and energy. Usual signals: periodic, alternate, rung, Dirac. Concept of System: Definition, examples of linear systems, natures and properties of systems (1 Lecture)
- Linear systems- Response to a given excitation- Transfer function- Stability; Laplace transform, Definitions, Properties, Application to the resolution of linear differential equations with constant coefficients. Physical properties of response (6 Lectures)
- Linear electrical networks: General topological definitions, dipole, network (branches, links, knot). Properties of electrical networks: Conventions of electricians. Kirchoff Laws: Electrical elementary dipoles, Sources (current, voltage) independent and related extinction of a source, passive dipoles (resistor, capacitor, coil) mutual inductance. Association of dipoles: Series, parallel, principle of duality. Aspect of the dipoles: Receiver and generator (3 Lectures)
- General Theorems: Principle of superposition, substitution principle, Thevenin Voltage divider, Kenelly, Millmann Theorems, Theorems resulting from the Norton duality principle, current divider, substitution Millman (6 Lectures)
- Permanent sinusoidal regime: Interest of steady state regime. Complex transformation, Equation of Linear Electrical Networks, complex impedance and admittance, energy considerations in sinusoidal regime, complex power, Boucherot theorem (6 Lectures)
- Diagrams: Notion of transmittance (transfer function), Bode diagram, Black diagram, Nyquist diagram (6 Lectures)
- Lab (12 Lectures).