
Functional Programming 
 

1. Course number and name: 020PFSES3/020FPRES3 Functional Programming 
 

2. Credits and contact hours: 4 ECTS credits, 2x1:15 contact hours 
 

3. Name of course coordinator: Youssef Bakouny 
 

4. Instructional materials: Slides; Moodle Ressources, Assignments, GitHub repos with 
code developed in class, Massive Online Open Courses (MOOCs) on Coursera: 
Functional Programming in Scala Specialization by Martin Odersky. 

 
5. Specific course information 

a. Catalog description: 
The goal of this course is to introduce the functional programming paradigm using, 
mainly, the Java programming language. It also illustrates some functional 
programming concepts in Python and introduces Scala as mutli-paradigm hybrid 
programming language. 
The course begins with an overview of functional programming followed by a 
gradual exposition of the evaluation model (used to reason about functional 
programs) alongside the explanation of the following concepts: recursion and the 
optimization of recursive functions, the use of functions as values, the partial 
application of functions, object immutability and its advantages, types and pattern 
matching, pairs and tuples, lists and functional collections, combinatorial search 
problem solving using for-expressions, lazy evaluation, functional streams, infinite 
sequences, the variance of polymorphism with regards to inheritance and a brief of 
overview of key monad such as Option, Try and Future. These concepts will be 
illustrated by examples and exercises in Java, Python and Scala. Finally, the course 
will end with an introduction to program proving using structural induction. 

 
b. Prerequisites: 020CPPES1/020OOPES1 Object-Oriented Programming 

 
c. Selected Elective for CCE students 

 
6. Educational objectives for the course 

a. Specific outcomes of instruction: 
- Explain the difference between the functional programming paradigm and the 

imperative programming paradigm. 
- Implement a program using the main concepts of the functional paradigm. 
- Analyze a functional program in terms of correctness, maintainability and 

performance. 
- Design and implement a functional program in response to a complex problem. 
- Evaluate the quality of a code in terms of maintainability and propose an 

adequately refactored code. 
 

b. PI addressed by the course: 



 
PI 1.3 2.3 2.5 6.4 
Covered x x x x 
Assessed x x x x 

 
7. Brief list of topics to be covered 

- A comparison of programming paradigms: functional and imperative An introduction 
to functional programming and the evaluation model (2 lectures) 

- An introduction to IntelliJ IDEA, Visual Studio Code and PyCharm The definition and 
use of functions Recursion and the termination of recursive functions Tail recursive 
functions The use of functions as values Higher Order Functions Currying and the 
partial application of functions (4 lectures) 

- The definition and use of immutable objects Test Driven Development applied to 
functional object-oriented programming The use of build automation tools, Git and 
GitHub (4 lectures) 

- Types, generics, variance and pattern matching (4 lectures) 
- Immutable linked lists and higher order functions on lists Reduction on lists Pairs and 

tuples (3 lectures) 
- Immutable collections, the resolution of combinatorial search problems and the use of 

for-expressions (3 lectures) 
- Lazy evaluation, functional streams and infinite sequences (3 lectures) 
- Introduction to static analysis and proof of programs (1 lecture) 


