Theoretical Chemistry

- 1. Course number and name: 020CHTCS1 Theoretical Chemistry
- **2.** Credits and contact hours: 4 ECTS credits, 2x1:15 contact hours
- 3. Names of instructors: Roger LTEIF

4. Instructional materials:

- Course handouts
- References
 - Catalyse de contact (conception, préparations et mise en œuvre des catalyseurs industriels)
 J.F. Le Page et coll. (TECNIP, 1978)
 - Chimie physique générale ; atomistique, liaisons chimiques et structures moléculaires
 - G. Pannetier (Masson, 1962)
 - Elements de chimie quantique à l'usage des chimistes

Jean-Louis Rivail (EDP Sciences, CNRS éditions, 1999)

- Physical chemistry
- P. W. Atkins (Oxford University Press, 1990)
- Chimie quantique, de l'atome à la théorie de Hückel

Bernard Vidal (Masson, 1992)

- Exercices de Chimie quantique

Bernard Vidal (Masson, 1995)

- Quantum chemistry

H. Eyring, J. Walter, G.E. Kimball (J. Wiley, New York 1958)

Modern quantum chemistry

Szabo, N.S. Ostlund (Macmillan, New York 1982)

- Elementary quantum chemistry

Frank L. Pilar (McGraw-Hill, 1990)

- Chimie quantique. Exercices et problèmes résolus

Claude Millot et Xavier Assfeld (Dunod, 2000)

Quantum chemistry

Ira N. Levine (Prentice-Hall, Inc. 1991)

- Mécanique Quantique
- C. Cohen-Tannoudji, B. Diu, F. Laloë
- Orbitales frontières : manuel pratique (InterEditions /CNRS Editions, 1995)
- N. Trong Anh
- Manuel de chimie théorique : Application a la structure et à la réactivité en chimie moléculaire (Ellipses, 2000)

Patrick Chaquin

5. Specific course information

a. Catalog description:

This course provides:

- An introduction to quantum phenomena, the postulates of Quantum mechanics: angular momentum, the hydrogen atom.
- The major approximation methods: variational principle, perturbation theory.
- The polyelectronic atoms: the atomic orbital approximation.
- Molecular orbital approximation and quantum chemical methods: Hartree-Fock, Hückel method. Application to diatomic and polyatomic molecules; role of spatial symmetry. Introduction to responsiveness. Approximation of frontier orbitals.
- Spectra of vibration, rotation and electronic transition of molecules: Study the spectra of vibration, rotation and electronic transition.

b. Prerequisites: 020ATONI2 Atomic Structure and chemical Bonding

c. Required/Selected Elective/Open Elective: Required

6. Specific goals for the course

a. Specific outcomes of instruction:

- Explain the nature and behavior of electromagnetic radiation using the wave model.
- Explain the photoelectric effect using the quantum model.
- Conceptualize the atomic model of quantum mechanics.
- Understand and master the essential concepts of quantum mechanics used in chemistry.
- Solve the Schrödinger equation for simple chemical systems (hydrogenoid atoms, polyelectronic atoms)
- Explain the effect of a magnetic field on the energy levels of an atom.
- Understand the quantum origin of chemical concepts (chemical bond and hybrid atomic orbitals, aromaticity, conjugated systems π in Hückel's method) and make the link with the quantities that can be measured experimentally (bond lengths, wavelengths of absorption, ionization energies, ...)
- Explain the rotation, vibration and electronic transition spectra of diatomic and polyatomic molecules

b. PIs addressed by the course:

PI	1.1	1.2	1.3
Covered	X	X	X
Assessed	X	X	X

7. Brief list of topics to be covered

- Chapter I- General introduction to quantum mechanics:

Origins of quantum mechanics, the principles of quantum mechanics, the dynamics of atomic and molecular (microscopic) systems and the postulates of quantum mechanics in the case of a particle in a box.

Exercises Series 1

- Chapter II- Single-electron atom; hydrogen or hydrogenoid:

Study the hydrogen atom and hydrogenoids as well as the radial and angular equations and the interpretation of the wave functions of hydrogenoids.

Exercises Series 2

- Chapter III- Polyelectronic atoms:

Study the case of He atom and the polyelectronic atoms: from the independent model to an approximate method.

Exercises Series 3

 Chapter IV- Influence of a magnetic field on energy levels: Study the energy diagrams in the presence of a magnetic field, the normal and anomalous Zeeman effect.

Exercises Series 4

Chapter V- Chemical bonds and molecular orbitals: Study the H₂⁺ chemical bond and the LCAO approximation, diatomic molecules, unsaturated molecules, the principles of Hückel's method and simple molecules.

Exercises Series 5

