Environmental Engineering and Management Journal

July 2018, Vol. 17, No. 7, 1693-1700 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

ANALYSIS OF THE CONTINUOUS MEASUREMENTS OF PM₁₀ AND PM_{2.5} CONCENTRATIONS IN BEIRUT, LEBANON

Wehbeh Farah^{1*}, Myriam Mrad Nakhlé^{2,5}, Maher Abboud³, Nelly Ziade⁴, Isabella Annesi-Maesano⁵, Rita Zaarour⁶, Nada Saliba⁶, Georges Germanos¹, Najat Aoun Saliba⁷, Alan L. Shihadeh⁸, Jocelyne Gerard⁶

 ¹Physics Department, Saint Joseph University of Beirut, Beirut, Lebanon
²Biology Department, Saint Joseph University of Beirut, Beirut, Lebanon
³Chemistry Department, Saint Joseph University of Beirut, Beirut, Lebanon
⁴Rheumatology Department, Saint Joseph University of Beirut, Beirut, Lebanon
⁵EPAR, Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136 INSERM & UPMC Paris 6, Sorbonnes Universities, Medical School Saint-Antoine, Paris, France
⁶Geography Department, Saint Joseph University of Beirut, Beirut, Lebanon
⁷Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
⁸Chemistry Department, American University of Beirut, Beirut, Lebanon

Abstract

Atmospheric concentrations of $PM_{2.5}$ and PM_{10} were measured in Beirut, Lebanon, for a period of 12 months. The daily average concentrations of PM_{10} and $PM_{2.5}$ were found to be 51.3 ± 33.1 and $30.3 \pm 9.4 \ \mu g.m^{-3}$, respectively, with corresponding maximum values of 359.7 and 208.6 $\ \mu g.m^{-3}$. The annual average concentrations of PM_{10} and $PM_{2.5}$ exceeded the World Health Organization's standards by 150% and 200%, respectively. The mean concentration of coarse particles ($PM_{10-2.5}$) was found to be 41% of the average PM_{10} , suggesting that the site was also influenced by re-suspended surface dust and soil. The mean $PM_{2.5}/PM_{10}$ ratio for the entire study period was 0.61 ± 0.12 . This indicates that in Beirut, $PM_{2.5}$ accounts for about 61% of PM_{10} . Such a large fraction of fine particles could have considerable effect on health; thus, it is necessary to quantify its impact. Daily concentrations of PM_{10} and $PM_{2.5}$ exceeded the upper threshold limit on 133 and 129 days, respectively, representing 39% and 38% of the entire sample, respectively. These findings indicate the important role dust events play within this area. Concentrations of $PM_{2.5}$ were highly correlated with NO₂, whereas concentrations of PM_{10} and $PM_{10-2.5}$ were not associated with any gaseous pollutant. Regression analysis showed that 93% of $PM_{2.5}$ and 43% of PM_{10} particle mass concentrations were derived from road traffic exhaust in Beirut.

Key words: air quality, dust event, health effect, particulate matter, regression analysis

Received: October, 2013; Revised final: September, 2014; Accepted: September, 2014; Published in final edited form: July 2018

^{*} Author to whom all correspondence should be addressed: e-mail: webbeh.farah@usj.edu.lb; Phone: +96 1142 1374; Fax: +96 1453 2657