Accepted Manuscript

Identifying the impact of Beirut Airport's activities on local air quality - Part I: Emissions inventory of NO₂ and VOCs

Tharwat Mokalled, Stéphane Le Calvé, Nada Badaro-Saliba, Maher Abboud, Rita Zaarour, Wehbeh Farah, Jocelyne Adjizian-Gérard

PII: S1352-2310(18)30267-X

DOI: 10.1016/j.atmosenv.2018.04.036

Reference: AEA 15969

To appear in: Atmospheric Environment

Received Date: 20 May 2017

Revised Date: 20 April 2018

Accepted Date: 22 April 2018

Please cite this article as: Mokalled, T., Le Calvé, Sté., Badaro-Saliba, N., Abboud, M., Zaarour, R., Farah, W., Adjizian-Gérard, J., Identifying the impact of Beirut Airport's activities on local air quality - Part I: Emissions inventory of NO₂ and VOCs, *Atmospheric Environment* (2018), doi: 10.1016/ j.atmosenv.2018.04.036.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Identifying the impact of Beirut Airport's activities on local air quality - Part I: Emissions inventory of NO₂ and VOCs

Tharwat Mokalled^{a,b}, Stéphane Le Calvé^b, Nada Badaro-Saliba^a, Maher Abboud^c, Rita Zaarour^a, Wehbeh Farah^c, Jocelyne Adjizian-Gérard^a

^aDépartement de Géographie, Faculté des sciences humaines, Université Saint-Joseph, Liban

^bInstitut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé (ICPEES, UMR 7515 CNRS/Unistra), Equipe de physico-chimie de l'atmosphère, 67087 Strasbourg, France

^cUnité de recherche Environnement, Génomique et Protéomique (UR-EGP), Faculté des sciences, Université Saint-Joseph, Liban

1 Abstract

2 In Lebanon, the steady growth of aircraft movements at Beirut-Rafic Hariri International Airport 3 (RHIA) and its geographical characteristics, signifies the necessity to assess the impact of Beirut airport on air quality. Up till now, no study has assessed the impact of Beirut-Rafic Hariri 4 5 International Airport (RHIA) on the air quality of Beirut. Hence, we produce the first emissions inventory of Beirut airport activities (2012) - including emissions from aircraft landing and take-6 7 off (LTO) operations, ground support equipment, stationary sources, as well as airside and 8 landside vehicles. This study, in which the first comprehensive emissions inventory in the 9 Middle East region is conducted, provides a methodology to assess airport emissions in a country with no data. We estimated that in 2012, Beirut airport emitted 454.8 t of NO_x, 50.7 t of NO₂, 10 404.1 t of NO, and 24.4 t of VOCs. Results showed that aircraft emissions (Landing/Take-off 11 12 cycle and auxiliary power units) dominate the airport emissions for NO_x (91%), NO_2 (92%), NO (91%), and VOCs (58%). Our emissions estimates will be used in identifying the contribution of 13 Beirut airport emissions to national emissions and in order to assess the airport's compliance 14 15 with environmental legislations and to assess mitigation options.

Keywords: Aviation Emission; Emissions Inventory Toolkit (EMIT); Nitrogen dioxide; Volatile
 organic compound; Beirut

18

19 **1. Introduction**

Civil aviation is an integral part of the world economy providing 56.6 million jobs worldwide 20 21 and its economic impact is estimated at \$2.4 trillion, equivalent to 3.4% of world gross domestic 22 product (GDP) (ATAG, 2014). Commercial aviation activity is predicted to grow by 5% per year over the next 10–15 years (CAEP 9, 2013). This would come at a cost, most notably a significant 23 increase in pollutant emissions. These emissions include nitrogen oxides (NO_x), Volatile Organic 24 25 Compounds (VOCs), carbon dioxide (CO_2), sulphur oxides (SO_x), particulate matter (PM) or soot, etc. that have the potential to impact both the global climate and local air quality (LAQ) 26 27 near airports presenting risks to public health (nearby residents, airport workers and passengers) (Jung et al., 2011; Levy et al., 2012; Schindler et al., 2013; Yim et al., 2013) and the 28

30 To implement mitigation measures and assess the potential health impacts of these aviation 31 activities on residents, evaluating the emissions of airport operations - the airport emissions 32 inventory – is necessary. Emission inventories are used as input for air quality modelling for the assessment of compliance with environmental legislation. Few studies have addressed airport 33 34 pollutant emissions. At Dallas/Fort Worth International Airport, Nikoleris et al. (2011) 35 conducted a detailed estimation of fuel consumption and emissions (NO_x, hydrocarbons, carbon monoxide); it was found that stop-and-go situations and taxiing at constant speed were the two 36 37 largest sources of fuel burn and emissions among the taxi phases. In the middle east region, only 38 few studies have addressed aircraft pollutant emissions at airports (Kesgin, 2006; Elbir, 2008; 39 Yılmaz, 2017). Elbir (2008) estimated atmospheric emissions (NO_x, HC, CO) from commercial 40 aircraft with gas turbine engines during the LTO cycle at a mid-sized Turkish airport - Adnan 41 Menderes Airport – as 197 t /y for NO_x, 21 t /y for hydrocarbons (HCs), and 138 t /y for carbon 42 monoxide (CO). Also, it was estimated that an increase of 1 min in taxiing time causes an 43 increase of 0.4%, 4.2%, and 4.6% in the amounts of NO_x, HC, and CO emissions respectively 44 (Elbir, 2008). A recent study conducted by Yilmaz (2017) estimated the total pollutant gas emissions (NO_x, HC, CO) from aircraft during the landing/take-off (LTO) cycles for the year 45 2010 at Kayseri Airport – Turkey. Results showed that 102.6 t/y of NOx, 8.4 t/y of HC, and 66.9 46 t/y of CO were emitted. However, these studies were just limited to determine pollutants from 47 48 aircraft emissions during the landing/take-off (LTO) cycle - not taking into account pollutant 49 emissions from the different airport activities (e.g. auxiliary power units (APU), ground support 50 equipment (GSE), power plants, landside vehicles, etc.). Also, only few studies took into account the real time-in-modes for aircraft operations. 51

In Lebanon, the steady growth of aircraft movements (+5%) at Beirut-Rafic Hariri International 52 53 Airport (RHIA) makes sense from the geographic perspective. Beirut-RHIA is in the middle of a 54 populated area and upwind of the capital Beirut. Hence, the pollution from the airport is expected 55 to blow over the capital and its suburbs. This was supported by observations found in a previous study conducted by Chelala (2008), which reported that 34% of the total nitrogen dioxide 56 57 concentrations at a measurement site located at the eastern part of Beirut (Pine Forest), was 58 coming from the southwest direction (where the airport is located). This makes us hypothesize 59 that the airport might be one of the reasons to explain this observation. Moreover, the airport's location and layout is such that the approach jet trajectory is above the seashore area (see Fig. 1 60 (a)), which presents a significant emission source up to distances greater than 8 km away from 61 62 the airport. Also, the topography surrounding the airport as well as time-varying wind direction and speed, can have a substantial influence on the dispersion of aviation emissions. It is 63 important to note that in our study, inhabitants and residential apartments surrounding the airport 64 are much closer to it than the population surrounding other international airports worldwide. 65

In Beirut, many studies have focused on road transport emissions (Chélala, 2008; Daher et al., 66 2013; Waked et al., 2012). Up till now, no study have assessed pollutant emissions from Beirut-67 RHIA's activities via conducting an emissions inventory. The output of this inventory will be 68 69 later exported to ADMS-Airport model in a future study to assess the pollutants dispersion taking 70 into account the influence of meteorological factors. Conducting this emissions inventory was a real challenge because no previous inventory has been done for airport-related emission sources 71 72 nor for road traffic around the airport. However, intensive work was dedicated to produce the 73 first emissions inventory for Beirut Airport (2012). Emissions data were calculated and stored in 74 the emissions inventory toolkit (EMIT) (CERC, 2015), requiring more than one year of 75 exhaustive work.

76 While aircraft engine emissions include non-volatile particulate matter that are harmful to human 77 health and the environment (Yim et al., 2015; Stettler et al., 2011; Barrett et al., 2010), this work 78 mainly focused on gaseous species where also assessed in other complementary experimental 79 studies (outdoor and indoor) to be published later. We have focused, in particular, on the effects 80 of nitrogen dioxide (NO₂) and VOCs, key ozone and PM precursors emitted from aircraft exhaust. Nitrogen dioxide (NO₂) is the most significant local air quality pollutant emitted from 81 aircraft (ICAO, 2008a) and presents a health risk in the Lebanese capital (Badaro-Saliba et al., 82 83 2013). On the other hand, VOCs are harmful pollutants for health (alteration of the airways, 84 cancer, and death) (Wood, 2008). The objectives of this paper are to: (i) provide a methodology to conduct the airport emissions inventory, especially in countries where no data is already 85 available; (ii) develop the first emissions inventory for Beirut-RHIA's activities at the medium 86 approach for the base year 2012; and (iii) assess the contribution of the different activities at 87 88 Beirut airport to the total mass emitted for 2012.

89

90 **2.** Methods

91

92 2.1 Study Area

This study was conducted at Beirut–RHIA, the only operational commercial airport in Lebanon, located about 8 km south of the capital's city center (see Fig. 1 (a)). The airport is located on the eastern coast of the Mediterranean Sea making it affected by a Mediterranean climate. To the east of the airport, Mount Lebanon - a mountain range sloping up to 2500 m - is located (Daëron, 2005). Excluding its western side (Mediterranean Sea), Beirut Airport is embedded in a very urbanized area.

99 The airport code number is 2E. Beirut-RHIA handles a wide range of flights including 100 international passenger, airfreight, military, and domestic air traffic, and is primarily utilized by the Middle East Airlines (around 50% of the total fleet). The distribution of aircraft by type at 101 102 Beirut Airport for the year 2012 is shown in Fig. 2: the statistical results show that Airbus 320 (A320) (39%), Airbus 321 (A321) (13%), Boeing 738 (B738) (9%), Airbus 330 (A330) (9%), 103 104 Airbus 319 (A319) (4%), Embraer 190 (E190) (3%), Boeing 737 (B737) (3%) are the most commonly used aircraft at Beirut - RHIA. Other aircraft types (< 20%) using Beirut - RHIA 105 106 include Embraer 170 (E170), Canadair Regional Jet CRJ-900 (CRJ9), Boeing 777 (B777), 107 Bombardier Challenger 605 (CL605), etc. (Lebanese DGCA, 2016, 2015).

Beirut airport has three runways and 14 taxiways (Fig. 2). The runways are named according to their magnetic heading; and are runways 03/21, 16/34, and 17/35. Runway 21, located to the east of the airport center, is the main departure runway due to the prevalence of southwest wind conditions. It extends to 3800 m and is 45 m wide (Lebanese DGCA, 2017), making it well equipped to accommodate a variety of aircraft. Runway 16 is the main landing runway due to the prevalence of wind conditions; while runway 17 is mainly used for landing and take-off of light private aircraft.

115

117 **2.2 Generating an Emissions Inventory**

118 An emissions inventory contains information regarding airport emissions (magnitude of 119 emissions and the spatial allocation of emissions). Using appropriate input data, it calculates the 120 total mass of emissions released into the environment from specific emission sources for a 121 selected period of time (e.g. t/yr) to be used as input for modelling pollutant concentrations 122 (ICAO, 2011). To minimize the uncertainty, the full range of sources (97% aircraft - engine 123 combinations, 90% auxiliary power unit (APU), all generators and fuel tanks, all ground support 124 equipment (GSE), etc.) which are important in assessing air quality in the vicinity of Beirut 125 Airport, were included in the emissions inventory. These sources have been grouped into the 126 following 5 categories: aircraft main engines (2.2.1), auxiliary power unit (2.2.2), aircraft ground 127 support equipment (2.2.3), airport static sources e.g. fuel tanks (2.2.4), and other sources (2.2.5).

Emissions data were calculated and stored in EMIT (Emissions Inventory Toolkit), developed by CERC (2015); extra work was urged to be done in this regard due to the absence of any previous database (aircraft types and engine models, APU models, GSE, power plants, etc.). Within EMIT, the emissions inventory contains several groups. Each group contains only sources of the same source type, i.e. volume, point, area, road, etc. The magnitude of emissions for each source was calculated from source activity data using emission factor datasets stored in EMIT, using equation (1) below:

135 $E=A\times e_f$ (1)

136 where A is the unit activity/yr and e_f is the emission factor in tonnes of pollutant/unit activity. These emission factor datasets are activity datasets i.e. for these source types the total emission E 137 of a particular pollutant in tonnes per year (t/yr) is equal to the product of the activity (A) and the 138 139 emission factor (e_f). For example, the activity A can be the number of LTO cycles per year or 140 working hours of APU per year. EMIT holds the emission factors and thus calculates the 141 emission rate E (t/yr) when the activity data are entered by the user. This is applied to point, area, line, and volume sources. These emission rates (t/yr) were then converted by EMIT to units of 142 $g/m^3/s$ (volume source) or $g/m^2/s$ (area source) or g/s (industrial point source), etc. according to 143 144 the dimensions of each source type used (Section 2.3). Uncertainty analysis of emission rates 145 generated by EMIT are rarely reported in literature.

On the other hand, the spatial allocations were plotted in ArcMap based on the real locations of the operations taking place in Beirut Airport. In a future study, these emissions rates and spatial allocations will be exported directly to ADMS-Airport as input for air dispersion modelling.

149 2.2.1 Aircraft Main Engines

The assessment of aircraft main engine emissions for 2012 included ca. 63000 aircraft movements during the different modes of operation of the Landing/Take-off cycle. A standard LTO cycle is comprised of four modal phases that represent approach (30% thrust), taxi-in/idle and taxi-out/idle (7% of the total thrust), take-off (100% of the total thrust), and climb-out (85% of the total thrust). The landing phase was further broken down into arrival (approach (3000-1500 ft), approach (1500 ft-touchdown)) and landing roll to obtain more accurate results. Each phase has a duration or time-in-mode and thrust settings as assigned by ICAO (2011).

157 There are various approaches or methodologies to quantify aircraft emissions, with varying 158 degrees of accuracy and what determines the choice of approach (basic, medium, and complex) 159 is the availability of information (magnitude and spatial allocation) and the required accuracy of 160 the concentration output (CERC, 2017). In brief, the basic approach requires basic knowledge 161 with easily available data; the medium approach is more airport specific and requires additional 162 information (e.g. volume sources for each of taxiing, take-off, climb-out, approach, and landing 163 rather than representing all aircraft emissions as a single volume source (CERC, 2017)), whereas 164 the complex approach requires in-depth knowledge (ICAO, 2011). In the complex approach, emissions generated are based on the actual performance of each aircraft i.e. a trajectory path and 165 166 engine power setting is calculated for each aircraft-engine combination and specific aircraft weight, allowing accurate calculation. Hence, in the latter approach a more accurate TIM is 167 168 known compared to the medium approach and the assumption that the aircraft power is set at a fixed level in a flight mode is not required (CERC, 2017). Despite the absence of any previous 169 170 database or inventory for Beirut Airport, intensive work was performed to assess aircraft engine emissions using the medium approach for the year 2012. To achieve that, a detailed emissions 171 172 inventory for about 63000 aircraft movements (31620 arriving and 31600 departing aircraft) was 173 conducted covering 97% of aircraft-engine combinations. These movements included all commercial, cargo, and general aviation flights; however, it was impossible to access 174 information regarding military fleet (2.5 % of the total fleet) due to security reasons. 175

176 The emissions inventory required detailed parameters, like aircraft-engine combination (e.g. 177 B737-300 may have different engines installed: 2 × CFM-56-3B1, 2 × CFM-56-3-B2, 2 × 178 CFM56-3C-1, or CFM56-5B6/P), thrust for each aircraft mode, annual number of LTO cycles for 179 each aircraft-engine combination, and time-in-mode (TIM) for each mode in a single flight. For 180 emission calculations, the ICAO dataset (year 2011) installed within EMIT was used along with activity data. The ICAO dataset provides the mode-specific emission factors (NO_x, NO₂, VOCs, 181 182 etc.) for certified engines of every aircraft-engine combination in units of kilogram per min 183 (kg/min), for the four power settings of the engine emissions certification scheme. For example, 184 the general speciation for NO_x (NO and NO₂) according to ICAO's dataset (2011) for the aircraft-engine B737-CFM-56-3B1 are provided in Table 1. In comparison with the speciation 185 186 (kg/LTO cycle) presented by Wood et al. (2008) for the same aircraft-engine combination and 187 TIM presented in Table 2, the major difference in speciation was at idle power: the emission 188 ratio (NO₂/NO_x) was equal to 91% (Wood et al., 2008) versus 15% according to ICAO's datasheet (CERC, 2015). Also, the total LTO NO_x emissions presented by Wood (3.30 kg) was 189 190 very similar to ICAO's total NO_x emissions (3.60 kg) presented by Wood et al. (2008). Hence, 191 even the emission factors reported by ICAO at different times, i.e. 2011 and that presented by 192 Wood et al. (2008), showed big discrepancies i.e. a factor of 2 (7.19/3.60). Of course, we 193 implemented the most recent datasheet in our study (ICAO, 2011) since it takes into account the 194 latest engine and aircraft technologies. Although NO is the major emitted pollutant; however, it 195 is rapidly transformed to NO₂ which justifies why we focused on NO₂ in our emissions inventory 196 and experimental field measurements.

197 Multiplying the mode-specific EF by the TIM yields a mode-specific emission rate in 198 units of kilograms per LTO for each engine. The emission rates (kg/yr) were calculated using 199 equation (2) (CERC, 2017).

200 Emissions (kg) = $\sum_{i=0}^{n} LTO_i \times \left[N_i \times \sum_{j=0}^{3} TIM_{i,j} \times EF_{i,j}\right]$ (2)

- 201 where i: airframe-engine type
- j: aircraft mode (take-off roll, climb-out, approach, taxi-in or out)

- n: number of different air frame-engine types (e.g. [A320-200, CFM56-5B4/3, (8CM055)],
 [Boeing 777-200 series, GE90-94B, (8GE100)], etc.)
- 205 $EF_{i, j}$: emission factor for airframe-engine type i in mode j (unit kg/min).
- 206 LTO_i: number of landings and take-off cycles of airframe-engine type i
- 207 N_i: number of engines installed on an airframe-engine

TIM_{i, j}: the time period (min) an airframe-engine type i spends at an identified power setting, pertaining to each of the four LTO operating modes j (i.e., take-off, climb-out, approach, and taxi/idle) of the operational flight cycle (ICAO, 2011).

Aircraft movements (timetable) for the year 2012 were obtained from the Directorate General of Civil Aviation (DGCA). Information regarding aircraft type and engine model were obtained by conducting field visits to airline companies, pilots, airport authority (Lebanese DGCA and Airlines, 2013), as well as from aircraft type certificate datasheets available online.

215 In general, times-in-mode differ depending on the characteristics of the airport. For example, the total time-in-mode for taxi-in and taxi-out is 26.0 min according to ICAO reference 216 LTO (ICAO, 2011) (see Table 3); which is much longer than the actual duration for taxi at Beirut 217 218 Airport. However, it was possible to determine more detailed times-in-mode to allow for a 219 realistic emissions inventory through monitoring aircraft movements from the control tower. The 220 taxi-out/idle duration was measured the moment the aircraft started its engine for taxiing until it 221 entered the runway for take-off. The same procedure was used to measure TIM for taxi-in from the time the aircraft left the runway until reaching the gate. Thus, the total taxi time was 222 223 estimated to be 10 min, which is less than the ICAO TIM by a factor of 2.6, which implies a 224 significant reduction in emission estimations during taxi by a factor of 2.6. Similarly, real time-225 in-modes for the other LTO operational modes were determined as summarized in Table 3.

In fact, it was not feasible to obtain exact information regarding thrust settings at each site and for every aircraft. However, estimated thrust settings were used based on the ICAO (2008b) standard thrust settings; the thrust levels considered for idle, approach, take-off, and climb-out are respectively 7%, 30%, 100%, and 85% of the rated thrust (see Table 3). It is important to note that in real operation, the take-off thrust varies from aircraft to another according to the aircraft type and engine model, flight load, meteorological conditions, runway conditions, etc.

233 Regarding the spatial references of the different modes of the LTO cycle, information 234 was obtained from monitoring the aircraft movements from the control tower as well as from 235 pilots, air traffic controllers, and aircraft engineers to obtain representative values. The geographic coordinates for the arrival and departure sources were obtained from pilots and air 236 traffic controllers using real aircraft observations and Standard Instrument Arrival Routes 237 238 (STARs) that are published procedures followed by aircraft before reaching a destination airport, 239 or Standard instrument departure (SID) routes that are published flight procedures followed by 240 aircraft on an IFR flight plan immediately after take-off from an airport. Aircraft sources used in 241 this study have the same location of emissions for all aircraft types i.e. all aircraft during climb-242 out are modelled within the same geographical extents although in reality there are differences in 243 the trajectories. This is a simplification, and when modelling an airport more details can be given 244 by assigning different geographical extents to different aircraft types. The depth and elevation used for each mode was adapted from ADMS-Airport Manual (CERC, 2017) for the medium 245

246 approach and is explained as follows: (i) Take-off and taxi are emissions for the main engines, so 247 the elevation used (1.75 m) represents typical engine heights (ii) the defaults (depth and 248 elevation) for approach were used to represent the descent of aircraft: the first volume source assumes well-mixed emissions between 3000 ft and 1500 ft, and the second volume source 249 250 assumes well-mixed emissions between 1500 ft and ground-level. Because approach (elevated 251 source) has a relatively small impact on ground-level concentrations of gaseous pollutants, this 252 relatively simple approach can be used to represent the aircraft and its environmental impact 253 (Matthews, 2018; Peace et al., 2006).

254 2.2.2 Auxiliary Power Unit (APU)

APU emissions were also assessed to complement aircraft movements for about 63000 255 256 aircraft. These emissions, which take place at the gate prior departure or after landing, were 257 modelled as volume sources. The activity data for APUs (APU type and operation hours) were 258 obtained as follows: (i) An approximate time of 1.5 hr before departure and 1.5 hr after landing 259 was used, as estimated by several airport engineers and pilots in RHIA; (ii) the APU models were obtained from several airline companies and by using several references (CERC, 2015; 260 European Environment Agency, 2009; Unique, 2005). The depth (12 m) and elevation (6 m) 261 262 were chosen according to ADMS-Airport manual values since APU units, typically located at the 263 back of an aircraft, are located around 6 m above ground-level. For emission calculations, APU 264 2004 dataset (CERC, 2015) installed within EMIT was used along with activity data. The APU 265 2004 dataset, compiled by FAA, includes emission factors (kg/unit) for 29 different APU types which are associated to aircraft included in the inventory. 266

267 2.2.3 Ground Support Equipment (GSE)

268 Aircraft GSE included both GSE operating at the stand (e.g. GPU) and mobile sources 269 across the apron (called airside vehicles (e.g. crew buses)). For GSE at the stand, detailed information about the working hours for each GSE type was obtained from the major handling 270 271 companies like Middle East Airlines Ground Handling (MEAG) responsible for the majority of 272 ground support equipment, Directorate General of Civil Aviation (DGCA) at Beirut Airport, 273 Mideast Aircraft Services Company (MASCO), Middle East Airports Services (MEAS), 274 Lebanese Air Transport (LAT), Trans Mediterranean Airways (TMA), Executive Air Services, Beirut Wings, and others. This included information about the various types of GSE utilized (> 275 276 16 GSE types): baggage belt loader, air climate unit, aircraft tug, baggage cart tractor, cargo 277 loader, cargo loader main deck, catering truck, GPU, refuelling truck, forklift, lavatory truck, 278 narrow body towbarless aircraft tug, passenger stairs, refuelling dispenser truck, refuelling tanker 279 truck, water truck, etc. In section 3.1, the emissions of al GSE are grouped together according to 280 literature (Celikel et al., 2002; Kennedy et al., 2009; Stettler et al., 2011). Since the majority of GSE emissions are from vehicles on the ground, lower values for the depth (2 m) and elevation 281 282 (1 m) are suggested by CERC. For emission calculations, AIRPORT GSE 2007 dataset (CERC, 283 2015) installed within EMIT was used along with activity data. This dataset includes emission factors (kg/hr) for generic heavy GSE or based on equipment at Zurich airport (Unique, 2005). 284 285 To assess airside vehicles (i.e. road traffic within the airport vicinity), emission rates were 286 computed using the EMIT datasheet (EUROSCALED 03) with activity data related to traffic (vehicles/hr classified as motorcycles/light/heavy, hourly speed). Due to the lack of any previous 287 assessment, activity data for airside vehicles was obtained by manually counting the vehicles on 288

the airport ramp and classifying them (light or heavy) at low, medium, and high traffic activitiesduring different times of the week between July and October.

291

292 2.2.4 Fuel Tanks

Airport fuel farm emissions are mainly constituted of VOCs, which result from the evaporation of the fuel stored in the airport tanks (aircraft fuel, GSE fuel, and power plant fuel). Because emissions from fuel tanks are dependent on the type and location of the tanks as well as the ambient temperature, a single set of emission factors are not available for this source type, so are not included in EMIT.

298 Annual emission rates (t/yr) for VOCs were first calculated using TANKS (EPA, 2016), which is a software designed by the United States Environmental Protection Agency (US EPA) to 299 estimate emissions from organic liquids in storage tanks. TANKS allows users to enter specific 300 301 information about a storage tank which include its dimensions (height and diameter in meters), 302 turnovers/yr, construction, paint condition (roof and shell), roof type, radius, and height; the 303 liquid contents (average and maximum liquid heights (ft), chemical components (chemical 304 category and liquid temperature); and the location of the tank (ambient temperature, etc.), to 305 generate an air emissions report. The combination of several parameters make the emission factor of a fuel tank as described by US EPA. Accordingly, the software TANKS calculates the 306 307 total emission per year upon filling in all the required parameters (activity data). The detailed 308 equations installed in the software are found in EPA's document (EPA, 2016). For example, for a 309 fixed-roof tank (case of Beirut Airport), total losses are equal to the sum of the standing storage 310 loss and working loss:

311 312

314

316

 $L_T = L_S + L_W$

(3)

(4)

313 Standing Storage Loss $(L_S) = 365 V_V W_V K_E K_S$

315 Where the activity data is V_v (the vapor space volume) and the emission factor is $W_V K_E K_S$

317 Working Loss $(L_w) = 0.0010 M_V P_{VA} Q K_N K_P$ (5) 318

All the parameters required for the 3 kerosene tanks found at Beirut Airport, as well as 20 other tanks (related to generators and GSE) were obtained, and the calculated emissions (kg/yr) were manually entered into EMIT. Upon entering the yearly emission rates and the spatial allocation of each fuel tank, emission rates for fuel tanks (modelled as area sources) were calculated by EMIT.

324 2.2.5 Other Sources (Power plants, urban sources)

Airport power plants (19 power plants) were modelled as point sources. Activity data (working hours) were obtained from Middle East Airports Services (MEAS) and Mideast Aircraft Services Company (MASCO). Due to the lack of previous measurements, the power plant stack heights and diameters were manually measured (measuring tape) and their geographic coordinates were taken using a GPS tracking unit. For emission calculations, activity data were used with emission factors based on the UK Emission Factor Database (UKEFD) 2007 Energy dataset (CERC, 2015) installed within EMIT. This dataset, based on private communication from

ACCEPTED MANUSCRIPT

332 UK Atomic Energy Authority, contains emission factors (kg/unit) for different combustion333 sources.

334 Urban sources included airport landside traffic constituting road traffic at major roads 335 close enough or directly related to the airport to require explicit modelling - the airport's main 336 entrance road. Emission rates resulting from road traffic at the airport main entrance (landside 337 traffic) were computed using the EMIT datasheet (EUROSCALED 03) with activity data related 338 to traffic, i.e. vehicles/hr (motorcycles/light/heavy) and hourly speed. EURO SCALED 03 is a 339 year-dependent emission factor dataset for vehicle emissions including the effects of new fuels 340 and vehicle technologies (CERC, 2015). Spatial parameters included road width (m), elevation 341 (m), canyon height (m) and gradient, as well as spatial allocation (vertices). Due to the lack of any information about these parameters, the flux of vehicles (count/hr) by vehicle category was 342 343 determined by manual counting, which took place at the road leading to the airport entrance at 344 different levels of activity (low, medium, high) and repeated several times a week to account for 345 all the traffic variations during the week.

346 **2.3 Emission Source Models**

347 All of the aforementioned sources were modelled as explicit sources as shown in Fig. 3. Once calculated, these emissions were included in ADMS according to several types of sources 348 349 (volume, area, point, road). In brief, a volume source corresponds to a source where the 350 emissions are distributed in a volume, a point source (or industrial point source) represents 351 typically a stack emission, and an area source (or industrial area source) corresponds to an 352 industrial source that is too large to be treated as a point source and is distributed over a large 353 area at ground level (CERC, 2015). Fig. 3 depicts the different types of source models used. All 354 the aircraft sources, including APU, were modelled as volume sources. GSE was modelled both 355 as a volume source (GSE at the stand) and a road source (airside vehicles). It is important to note 356 that the GSE at the stand and APU are both located at the gates at the center of the airport, which leads to the increase in the estimated emissions at this location, as will be seen later in the model 357 358 results. The other airport sources were considered as follows: fuel tanks were modelled as area 359 sources, generators or power plants as point sources, and the airport main entrance as a road 360 source as shown in Fig. 3.

361 **3. Results and Discussion**

3.1 Emissions

The emission rates calculated by EMIT are presented in Table 4 3. EMIT first calculates the emission rates in t/yr and then converts them to units of g/s (point sources), $g/m^2/s$ (area source) or $g/m^3/s$ (volume source) or g/km/s (road source) by dividing the emission rates in t/yr by the product of the total volume or area with the total time (Fig. 4 and Fig S1 and S2 in supplementary material). These converted emission rates will be used later in ADMS-Airport dispersion modelling equations.

Fig. 5 shows the estimated annual airport-related NO_2 and VOCs emissions (t/yr) as a function of major source category. The estimated total NO_2 and VOCs emissions for the year 2012 are 50.7 and 24.4 t respectively. As seen in Fig. 5, aircraft emissions (APU and LTO cycle)

371 dominate the airport emissions for both NO₂ (92%) and VOCs (68%). As expected, aircraft 372 emissions during the LTO cycle (37.4 t/yr) make the dominant contribution to airport NO₂ 373 emissions, followed by aircraft APU emissions (9.3 t/yr), GSE (3.7 t/yr), whereas stationary and 374 road sources are minor contributors (see Fig. 5 (a)). This order of contribution, observed in other 375 studies (Celikel et al., 2002; Stettler et al., 2011), is due to the dependence of the total emissions 376 on the yearly activity data (e.g. working hours) and emission factors (section 2.2) which are highest for aircraft engines. Similarly for VOCs, the major source is also the LTO cycle (11.5 t) 377 378 (see Fig. 5 (b)). The estimated VOCs emission from GSE are 5.5 t, followed by stationary 379 sources (3.8 t), and APU (2.7 t). In fact, the major contributors to these stationary source 380 emissions are fuel tanks (99.7%), especially the 3 kerosene fuel tanks located at the eastern part 381 of the airport which present a significant source of VOCs.

382 Aircraft NO₂ and VOCs emission are broken down further into emissions by the different 383 modes of the LTO cycle (see Fig. 6). It is important to differentiate between ground level 384 emissions and elevated emissions associated with aircraft where the former have the biggest 385 impact on local air quality, whereas the latter have less impact as they take place at increasing 386 heights. Aircraft ground NO₂ emissions (Landing roll, taxi-in, taxi-out, take-off) were approximately 15.45 t in 2012 constituting 41% of total aircraft engine emissions, whereas the 387 388 corresponding Aircraft NO₂ and VOCs emission are broken down further were estimated to be 389 10.29 t constituting up to 90% (see Fig. 6). As shown in Fig. 6 (a), the 2 major contributors for NO₂ emissions are the climb-out and approach (arrival) phases each contributing to 11 t/yr. In 390 fact, the emission rate per second for the climb-out phase $(1.15 \times 10^{-9} \text{ g/m}^3/\text{s})$ is greater than the 391 approach phase $(4.7 - 5 \times 10^{-10} \text{ g/m}^3/\text{s})$, but the total volume for the approach phase led to equal 392 393 emissions in tonnes per year. This is significant because this highlights the fact that the climb-out 394 phase has a higher impact on the concentrations generated by the dispersion modelling (future study). Although the total duration for the take-off phase is 0.7 min, it contributes by 1.3 t/yr to 395 the total NO₂ emissions (14% of the total LTO) (see Fig. 6 (a)) with an emission rate of $3.53 \times$ 396 397 10^{-7} g/m³/s (see Table 4). This is due to the fact that at high speed, the temperature within the 398 combustion chamber is higher, which leads directly to the increase in the emission of nitrogen 399 oxides (Dagaut et al., 2006; Penner, 1999). On the other hand, the taxi phase (taxi-in and taxi-400 out) dominates the VOC emission sources with a contribution of 10 t/yr or 88% of the LTO cycle 401 contribution as seen in Fig. 6 (b). This is followed by the approach (7%), climb-out (3%), take-402 off (1%), and landing roll (1%). This result is expected as the ICAO VOCs emission factors for 403 the taxi phase are the highest and those of the take-off phase are the lowest. VOCs emission are 404 higher at low power settings when the temperature of the air is relatively low and the fuel 405 atomization and mixing process is least efficient. This is also in accordance with ICAO databank 406 sheets for unburned hydrocarbons (UHC) for all modern turbine engines; all engines produce 407 less CO and NMHC emission per kg of fuel burned as their power levels are increased above idle 408 (Anderson et al., 2006).

409 **3.2 Comparison with Other Airports**

Table 5 compares the annual LTO emissions at Beirut Airport (2012) with two mid-sized airports (Adnan Menderes Airport (AMA) (2004) and Kayseri Airport (2010)) in Turkey (Elbir, 2008; Yılmaz, 2017) which is a Middle Eastern country like Lebanon. Comparisons were also done with Toronto Pearson International Airport – Canada (2007) (Kennedy *et al.*, 2009) which represents a busy airport in North America. The total emissions of VOCs from LTO activities at Beirut Airport (11.5 t/yr) are comparable to emissions from Kayseri Airport (8.4 t/yr) and are 416 almost half the VOCs emission by AMA (21 t/yr). However, much higher VOCs emission are produced by Toronto Pearson International Airport (TPIA) (222 t/yr) as summarized in Table 5. 417 418 These observations can be explained by the higher number of LTO movements in TPIA (182122 movements/yr) which was almost 6 times the number of LTO movements in Beirut Airport for 419 420 the year 2012. NO_x emissions exhibit the same relative variability among the airports listed in 421 Table 5, reaching up to 2265 t/yr which is around 6 times NO_x emissions at Beirut Airport. This 422 observation maybe explained by the higher number of LTO cycles in TPIA (182122 LTO 423 movements for the year 2007) which is interestingly also around 6 times the LTO movements at 424 Beirut Airport for the year 2012. As a comparison, we can see that the average VOCs mass 425 emitted per LTO movement at Beirut – RHIA (0.00036 t/yr) is much less than the mass emitted by other airports (0.0012 - 0.0021 t/yr) listed in Table 5, which may be related to the fact that in 426 this study we used the real TIM of taxi which is less than the time assigned by ICAO by a factor 427 428 of 2.6 (see Table 3). On the other hand, NO_X emitted per LTO movement was in the same range 429 (0.012 - 0.013 t/yr) for Beirut Airport, Izmir, and Toronto Airport. This is probably attributed to 430 the use of similar TIMs for each of the take-off and climb phases (almost equal to ICAO TIMs 431 presented in Table 3), which are the major contributors among the various LTO phases to NO_X emissions. It is important to note that while total pollutant emissions from Beirut Airport are 432 433 much lower than emissions from large international airports (e.g. Toronto Pearson International 434 Airport); however, the location of Beirut Airport in the middle of an urbanized area in very close 435 proximity to nearby residents, upwind of the capital Beirut, surrounded by the sea to the west and 436 mountains to the east – all make it a significant emission source.

437 **4.** Conclusions

438 A methodology to assess emissions from Beirut Airport's activities has been developed and applied despite the absence of any data (activity data related to aircraft, airport stationary and 439 440 mobile sources, road traffic, etc.). This study provides the first emissions inventory for Beirut 441 Airport's activities using a European emission inventory toolkit in the medium approach. In fact, 442 it is the first study in the Middle East region to conduct a comprehensive emissions inventory for 443 all the airport-related sources. This detailed emissions inventory took into account operational 444 details for around 63000 aircraft movements for the year 2012, as well as detailed parameters for 445 most of the airport's emission sources. We estimate that in 2012, Beirut airport emitted 402.9 t of 446 NO_x , 50.7 t of NO_2 , and 32 t of VOCs. This up-to-date and comprehensive emission inventory 447 will be used in a future study to assess the impact of Beirut Airport activities on air quality-by 448 providing emission rates for the dispersion model ADMS-Airport which uses a series of 449 dispersion equations that take into account emission rates, meteorological parameters (e.g. wind, 450 turbulence, and boundary layer), etc.

451 Acknowledgments

This study was funded by the Research Council at USJ and was also supported by Strasbourg University and Campus France. Authors strongly acknowledge the cooperation of the responsibles at Beirut Airport to conduct the emissions inventory.

References

- Anderson, B.E., Chen, G., Blake, D.R., 2006. Hydrocarbon emissions from a modern
 commercial airliner. Atmos. Environ. 40, 3601–3612.
 https://doi.org/10.1016/j.atmosenv.2005.09.072
- 457 Inups.//doi.org/10.1010/j.annosenv.2003.09.07
- 458 ATAG, 2014. Aviation Benefits Beyond Borders.
- Badaro-Saliba, N., Adjizian-Gerard, J., Zaarour, R., Abboud, M., Farah, W., Saliba, A.N.,
 Shihadeh, A., 2013. A geostatistical approach for assessing population exposure to NO2
 in a complex urban area (Beirut, Lebanon). Stoch. Environ. Res. Risk Assess. 28, 467–
 462 474. https://doi.org/10.1007/s00477-013-0765-3
- 463 CAEP 9, 2013. Committee on Aviation Environmental Protection Ninth Meeting.
- 464 Celikel, C., Duchene, N., Fleuti, E., Fuller, I., Hofmann, P., Moore, T., Silue, M., 2002. Airport
 465 Local Air Quality Studies Case Study: Emission Inventory for Zurich Airport with
 466 different methodologies.
- 467 CERC, 2017. ADMS-AIrport User Guide. version 4.1. Cambridge Environmental Research
 468 Consultant Ltd, 3 King's Parade. Carmbridge CB2 1SJ.
- 469 CERC, 2015. EMIT: Atmospheric Emissions Inventory Toolkit User Guide. Version 3.4.
 470 Cambridge Environmental Research Consultant Ltd, 3 King's Parade. Carmbridge CB2
 471 1SJ.
- 472 Chélala, C.Y., 2008. Transport routiers et pollution de l'air en NO2 dans Beyrouth (Liban)
 473 Application Du Modele STREET (Ph.D. Thesis). Saint Joseph University-Beirut.
- 474 Daëron, M., 2005. Rôle, cinématique et comportement sismique à long terme de la faille de
 475 Yammoûneh (Ph.D. Thesis). INSTITUT DE PHYSIQUE DU GLOBE DE PARIS.
- 476 Dagaut, P., Cathonnet, M., 2006. The ignition, oxidation, and combustion of kerosene: A review
 477 of experimental and kinetic modeling. Prog. Energy Combust. Sci. 32, 48–92.
 478 https://doi.org/10.1016/j.pecs.2005.10.003
- 479 Daher, N., Saliba, N.A., Shihadeh, A.L., Jaafar, M., Baalbaki, R., Sioutas, C., 2013. Chemical 480 composition of size-resolved particulate matter at near-freeway and urban background 481 sites in the greater Beirut area. Atmos. Environ. 80, 96–106. https://doi.org/10.1016/j.atmosenv.2013.08.004 482
- 483 Elbir, T., 2008. Estimation of Engine Emissions from Commercial Aircraft at a Midsized
 484 Turkish Airport. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:3(210)
- 485 EPA, 2018. TANKS Emissions Estimation Software [WWW Document]. URL
 486 https://www3.epa.gov/ttnchie1/software/tanks/ (accessed 6.2.16).
- 487 European Environment Agency, 2009. EMEP/EEA air pollutant emission inventory guidebook 488 2009 European Environment Agency [WWW Document]. URL
 489 http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009
 490 (accessed 6.1.16).
- 491 FAA, 2015. Aviation Emissions, Impacts & Mitigation A Primer. Office of Environment and
 492 Energy.
- 493 ICAO, 2011. Airport Air Quality Manual (Doc 9889).
- ICAO, 2008a. Report of the independent experts on the LTTG NOx review and medium and
 long term technology goals for NOx. International Civil Aviation Organization,
 Montréal :
- 497 ICAO, 2008b. Annex 16, Vol. II, Aircraft Engine Emissions, third ed.

- Jung, K.-H., Artigas, F., Shin, J.Y., 2011. Personal, indoor, and outdoor exposure to VOCs in the
 immediate vicinity of a local airport. Environ. Monit. Assess. 173, 555–567.
 https://doi.org/10.1007/s10661-010-1404-9
- Kennedy, M., Gauthier, M., Welburn, C., Lepage, M., 2009. 2007 EMISSIONS INVENTORY
 Toronto Pearson International Airport Toronto, Ontario.
- Kesgin, U., 2006. Aircraft emissions at Turkish airports. Energy 31, 372–384.
 https://doi.org/10.1016/j.energy.2005.01.012
- 505LebaneseDGCA,2017.eAISPackageforLebanon[WWWDocument].URL506https://eaip.austrocontrol.at/all/ol/170105/2017-01-05-AIRAC/index.html(accessed5079.18.17).
- Lebanese DGCA, 2016. Statistics Beirut Rafic Hariri International Airport [WWW Document].
 URL https://www.beirutairport.gov.lb/_statistic.php (accessed 3.12.17).
- 510 Lebanese DGCA, 2015. Statistics Department Daily Transactions.
- 511 Lebanese DGCA and Airlines, 2013. Personal Communication.
- Levy, J.I., Woody, M., Baek, B.H., Shankar, U., Arunachalam, S., 2012. Current and future particulate-matter-related mortality risks in the United States from aviation emissions during landing and takeoff. Risk Anal. Off. Publ. Soc. Risk Anal. 32, 237–249. https://doi.org/10.1111/j.1539-6924.2011.01660.x
- Mahashabde, A., Wolfe, P., Ashok, A., Dorbian, C., He, Q., Fan, A., Lukachko, S.,
 Mozdzanowska, A., Wollersheim, C., Barrett, S.R.H., Locke, M., Waitz, I.A., 2011.
 Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci.
 47, 15–52. https://doi.org/10.1016/j.paerosci.2010.04.003
- 520 Matthews, C., 2018. Heathrow Air Quality Strategy 2011-2020.
- Nikoleris, T., Gupta, G., Kistler, M., 2011. Detailed estimation of fuel consumption and
 emissions during aircraft taxi operations at Dallas/Fort Worth International Airport.
 Transp. Res. Part Transp. Environ. 16, 302–308. https://doi.org/10.1016/j.trd.2011.01.007
- Peace, H., Maughan, J., Owen, B., Raper, D., 2006. Identifying the contribution of different
 airport related sources to local urban air quality. Environ. Model. Softw., Urban Air
 Quality ModellingUrban Air Quality Modelling 21, 532–538.
 https://doi.org/10.1016/j.envsoft.2004.07.014
- Penner, J.E., 1999. Aviation and the Global Atmosphere: A Special Report of the
 Intergovernmental Panel on Climate Change. Cambridge University Press.
- 530 Schindler, B.K., Weiss, T., Schütze, A., Koslitz, S., Broding, H.C., Bünger, J., Brüning, T., 2013. 531 Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate 532 flame retardants Toxicol. after fume events. Arch. 87, 645–648. 533 https://doi.org/10.1007/s00204-012-0978-0
- Stettler, M.E.J., Eastham, S., Barrett, S.R.H., 2011. Air quality and public health impacts of UK
 airports. Part I: Emissions. Atmos. Environ. 45, 5415–5424.
 https://doi.org/10.1016/j.atmosenv.2011.07.012
- 537 Unique, 2005. Aircraft APU Emissions at Zurich Airport.
- Waked, A., Afif, C., 2012. Emissions of air pollutants from road transport in Lebanon and other
 countries in the Middle East region. Atmos. Environ. 61, 446–452.
 https://doi.org/10.1016/j.atmosenv.2012.07.064
- Wood, E.C., Herndon, S.C., Timko, M.T., Yelvington, P.E., Miake-Lye, R.C., 2008. Speciation
 and chemical evolution of nitrogen oxides in aircraft exhaust near airports. Environ. Sci.
 Technol. 42, 1884–1891.

- Yim, S.H.L., Stettler, M.E.J., Barrett, S.R.H., 2013. Air quality and public health impacts of UK
 airports. Part II: Impacts and policy assessment. Atmos. Environ. 67, 184–192.
 https://doi.org/10.1016/j.atmosenv.2012.10.017
- 547 Yılmaz, İ., 2017. Emissions from passenger aircrafts at Kayseri Airport, Turkey. J. Air Transp.
 548 Manag. 58, 176–182. https://doi.org/10.1016/j.jairtraman.2016.11.001

CHR MAN

Table 1: Mode-specific emission factors (kg/min) for the aircraft-engine Boeing 737 - CFM - 56 - 3B1 (ICAO, 2011)

Table 2: Comparison of the speciation of nitrogen oxides (kg/LTO) according to ICAO's dataset (2011) and Wood *et al.* (2008)

Table 3: Source details for aircraft taxiing, take-off, and climb groups. The realistic times-inmode were determined in this work through monitoring aircraft movements, presented versus ICAO's (2011).

Table 4: EMIT emission rates calculated for Beirut Airport inventory (2012). Emission rates in t/yr are converted to units of g/s (point source), $g/m^2/s$ (area source), $g/m^3/s$ (volume source), or g/km/s (road source).

Table 5: Comparison of annual LTO emissions (t/yr) at Beirut Airport and other airports worldwide

Table 1

Emission Factor (kg/min)	NO ₂	NO _x
Idle	0.02	0.02
Approach	0.02	0.12
Climb-out	0.06	0.69
Take-off	0.09	1

	ICAO dataset, 2011			Wood et al., 2008		
Emission Factor (kg/LTO)	NO_2	NO _x	% (NO ₂ /NO _x)	NO_2	NO_x % (NO_2/NO_x)	
Idle	0.52	1.39	15.0	0.53	0.58 91.4	
Approach	0.17	1.16	37.5	0.08	0.49 16.3	
Climb-out	0.17	3.24	5.3	0.13	1.53 8.5	
Take-off	0.06	1.41	4.5	0.06	0.70 8.6	
Totals per engine/LTO	0.93	7.19	12.9	0.80	3.30 24.2	

*For the sake of comparison with Wood et al. (2008), NO_2 and NO_x emissions for ICAO (2011) were calculated by multiplying the time-in-mode presented by Wood et al. (2008) with the emission factors (kg/min) provided by ICAO (2011)

Source	Source Name	Thrust (%)	TIM (min)	TIM (min)
Group		1 III USt (70)	ICAO	This study
	Approach (3000-1500 ft)			2.5
Arrival	Approach (1500 ft-touchdown)	30	4.0	2.5
	Landing roll			0.6
TaxiTaxi-in Taxi-out7	Taxi-in	7	7.0	4.0
	1	19.0	6.0	
Take-off	Take-off	100	0.7	0.7
Climb	Climb	85	2.2	2.0

Source Group		NO ₂	VOCs		
	Ve	olume Sources			
	t/yr	g/m ³ /s	t/yr	g/m ³ /s	
Approach 3000 - 1500 ft	5.53	4.70×10^{-10}	0.39	3.32×10^{-11}	
Approach 1500 - 0 ft	5.53	5.01×10^{-10}	0.39	3.57×10^{-11}	
Landing Roll	1.33	8.81×10^{-8}	0.09	6.27×10^{-9}	
Climb-out	10.95	1.15×10^{-9}	0.40	$4.17 imes 10^{-11}$	
Take-off	5.09	3.53×10^{-7}	0.17	1.16×10^{-8}	
taxi in (1)	0.90	3.73×10^{-7}	1.00	$4.14 imes 10^{-7}$	
taxi in (2)	0.90	6.69×10^{-7}	1.00	$7.43 imes 10^{-7}$	
taxi in (3)	0.90	$1.02 imes 10^{-6}$	1.00	1.13×10^{-6}	
taxi in (4)	0.90	$5.81 imes 10^{-7}$	1.00	$6.45 imes 10^{-7}$	
Taxi-in (total)	3.61	$3.73 - 10.2 \times 10^{-7}$	4.01	$4.14 - 11.3 \times 10^{-7}$	
Taxi out (1)	0.90	$1.13 imes 10^{-6}$	1.00	$1.26 imes 10^{-6}$	
Taxi out (2)	1.80	$2.86 imes 10^{-7}$	2.01	3.19×10^{-7}	
Taxi out (3)	0.90	9.94×10^{-7}	1.00	$1.11 imes 10^{-6}$	
Taxi out (4)	0.90	$8.16 imes 10^{-7}$	1.00	$9.08 imes 10^{-7}$	
Taxi out (5)	0.90	1.67×10^{-6}	1.00	$1.86 imes10^{-6}$	
Taxi-out (total)	5.41	$2.86 - 16.7 \times 10^{-7}$	6.03	$3.19 - 12.6 \times 10^{-7}$	
APU	9.29	$1.21 imes 10^{-7}$	2.65	$3.45 imes 10^{-8}$	
GSE (stand ¹)	3.64	3.90× 10 ⁻⁷	5.22	5.59×10^{-7}	
	Æ	Area Sources			
	t/yr	g/m ² /s	t/yr	g/m ² /s	
Fuel Tank	0.00	0.00	3.79	$0.035 - 3990 \times 10^{-5}$	
Point Sources (g/s)					
	t/yr	g/s	t/yr	g/s	
Power plants (g/s)	0.11	$8.56 - 646 \times 10^{-6}$	0.02	$1.48 - 111.53 \times 10^{-6}$	
Road Sources (g/km/s)					
	t/yr	g/km/s	t/yr	g/km/s	
Main Entrance	0.15	0.01	0.95	0.07	
GSE (airside vehicles ²)	0.05	0.0015 - 0.0017	0.25	0.007 - 0.008	

*Emission rates in t/yr are converted to units of g/s (point sources), $g/m^2/s$ (area source), $g/m^3/s$ (volume source), or g/km/s (road source) by dividing them by the product of the total volume or area with the total time.

¹GSE at stand includes ground power unit (GPU), baggage belt loader, air climate unit, catering truck, forklift, lavatory truck, etc.

²Airside vehicles are mobile sources across the apron.

Pollutants	This Study: Beirut Airport (2012)	Kayseri Airport, Turkey (2010)	Adnan Menderes Airport, Turkey (Izmir) (2004)	Toronto Pearson International Airport (TPIA) (2007)
VOCs	11.5	8.4	21	222
NO _x	402.9	102.6	197	2265
LTO movements [*]	31600	3944	14368	182122

*Landing and take-off movements are defined as an arrival and departure pair from the airport.

Fig. 1: (a) Study Area (Beirut - Rafic Hariri International Airport). The red dotted line reflects the main jet trajectory used for landing in Beirut-RHIA (b) Top view of Beirut Rafic Hariri International Airport, taken from Lebanese DGCA (2010) (Rwy: runway)

Fig. 2: Percentage of relative aircraft frequencies (2012) by aircraft type at Beirut Airport (Lebanese DGCA, 2015).

Fig. 3: 3-D geospatial emissions inventory created by exporting EMIT database to Arc Globe for the sources modelled at Beirut Airport in this study (year 2012)

Fig. 4 3-D geospatial emissions inventory (2012) created by exporting EMIT database to Arc Globe for volume sources (a) VOC, (b) NO_2

Fig. 5: Ground level airport-related emissions (in units of t) estimated in this work by EMIT from Beirut Airport in 2012 (a) NO₂ (b) VOCs

Fig. 6: Ground-level LTO emissions (in units of t) estimated in this work by EMIT from aircraft at Beirut Airport in 2012 (% by flight phase or mode of LTO cycle) (a) NO₂ (b) VOCs

Fig. 1

(a)

Fig. 2

Fig. 3

(b)

Fig. 5

(b) VOC Emissions Inventory (2012): 24.4 t/yr

(a) Aircraft LTO NO₂ Emissions (37.4 t/yr)

- Beirut Airport is located between the sea and mountains within a populated area.
- A methodology to conduct airport emission inventories has been established.
- Beirut Airport activities emitted 454.8 t of NO_x, 50.7 t of NO₂, and 24.4 t of VOCs.
- The methodology allowed identifying emission factors from airport activities.