

Blockchain Use in Security

Joanna Moubarak¹ and Maroun Chamoun¹

¹Faculty of Engineering, University of Saint Joseph, Beirut, Lebanon

Overview

- Introduction
- Blockchain Development
- Comparison of Blockchains
- Attacks and Challenges
- Creating a k-ary malware using Blockhain
- Blockchain use in industry
- Conclusion

Introduction

Blockchain is defined as:

- a secure, distributed, peer-to-peer environment
- a fault tolerant and reliable software network
- a mathematical and deterministic mechanism
- a public transaction digital ledger
- an ultimate revolution

Introduction

FutureAdvisor

Source: EverisDigital

Blockchain Development

Fault Tolerant Distributed Systems		Paxos Algorithm			Satoshi Nakamato Bitcoin: A Peer-to- Peer Electronic Cash System		Gavin Wood EVM: Ethereum Virtual Machine		Linux Foundation Hyperledger Technology		on Vitalik Buterin Ethereum 2.0		
19709	S	2001			2008		2	2014		Dec 2015	20	16	
										• •		•	
	2000		2002			2013			2015	2016		2017	
	CAP Theorem		em Asynchronous models		Ethereum Introduction			Whisper Protocol			Communities innovations and releases.		
			extension		Vitalik E		ıterin						

Blockchain Structure

Figure 1 Blockchain structure

- Cryptographic keys
- Transactions
- Hashing
- Miners
- Consensus Algorithm

Comparison of Blockchains

Figure 2 Bitcoin Network

Comparison of Blockchains

Validating Node 2 Transaction Network H Blockchain Membership Validating Service PKI Node 3 Non-**Validating** Node 4 Solution Provider

Figure 3 Ethereum Network

Figure 4 Hyperledger Network

 Table 1
 DLTs Comparison

Attacks and Challenges

- Transactions Security
- Spam attacks
- Anonymity
- Targeted DDoS attacks
- Timejacking attacks
- Mining Pools
- Malicious Contracts

Formalization, implementation and testing of new undetectable viral algorithms

Malware Life cycle

- 1. Exploitation of System
- 2. Malware Executable Download
- 3. Callbacks and Control Established
- 4. Data Exfiltration
- 5. Malware Spreads Laterally

Limitation of Anti-Antiviral Techniques

- Stealth Techniques -> Combination of several techniques
- Polymorphism -> Difficult to implement and manage
- Code rewriting ->Add random instructions, modifies the code but same result
- Encryption techniques -> The encryption procedure remain unchanged
- Code armouring -> It will delay the analysis but the final result is the same

New Undetectable Viral Algorithm

• **K-ary** viruses: The objective is to scatter the viral information over different files: each of the k constituting part looks like an innocent file and thus does not trigger any alert.

k viruses

Undetectable Viral Algorithm Challenges

- Dependency problem
- Key Management Problem
- Key Generation Problem
- Randomization

Blockchain

A 4-ary malware workflow

Node.js

k1.exe transaction summary

Transaction

Transaction 3178cf4946171a12ff52547b5d9c3982b59390c54a7387df2f659a7c51e816b1

Summary

Size	235 (bytes)
Fee Rate	0.00480000000000004 BTC per kB
Received Time	Jan 4, 2018 4:04:00 PM
Mined Time	Jan 4, 2018 4:04:00 PM
Included in Block	0000000000000000006be80290136466f2fcd3bdacbb10758e90d5687ea81ca7

k1.exe block summary

Block #502546

BlockHash 00000000000000000006be80290136466f2fcd3bdacbb10758e90d5687ea81ca7

Summary

Number Of Transactions	28	
Height	502546 (Mainchain)	
Block Reward	12.5 BTC	
Timestamp	Jan 4, 2018 4:04:00 PM	
Mined by		
Merkle Root	c14160392a4736d6283bab326db6a	
Previous Block	502545	

1931136454487.7163
180091c1
966611
536870912
3725939730
502547

k1 Execution: Auto-reproduction

Name	Date modified	Туре	Size
i juwgohah	1/6/2018 11:49 AM	Application	38 KB
oiyyhstv	1/6/2018 11:48 AM	Application	38 KB
typkymvu typkymvu	1/6/2018 11:50 AM	Application	38 KB
yeqerjhx	1/6/2018 11:49 AM	Application	38 KB

Our Contributions

- Joanna Moubarak, Maroun Chamoun and Eric Filiol. "Developping a k-ary Malware Using Blockchain". NOMS 2018 IEEE/IFIP Man2Block 2018, Tapei, April 27th, 2018.
- Joanna Moubarak, Eric Filiol & Maroun Chamoun. "On Blockchain Security and Relevant Attacks". IEEE Menacomm 2018, Jounieh, Lebanon, April 18th - 20th, 2018.
- Joanna Moubarak, Eric Filiol and Maroun Chamoun. "Comparative Analysis of Blockchain Technologies and the TOR Network: Two Faces of the same Reality?" IEEE-CSNet 2017, Rio de Janeiro, Brazil, October 18-20th, 2017.
- Joanna Moubarak, Maroun Chamoun and Eric Filiol. "Comparative Study of Recent MEA Malware Phylogeny". ICCCS'2017, July 11th-14t, 2017, Krakow, Poland.
 This paper has received the best presentation award.
- Joanna Moubarak, Maroun Chamoun and Eric Filiol. Middle East Malware Evolution. 23rd international Scientific Conference of LAAS, April 6th 7th, 2017, Beirut, Lebanon.

Modeling a new secure ICS infrastructure based on decentralized architecture

PhD student: Wassef Karimeh

CERN-European Organization for Nuclear Research

- What is the universe made of? How did it start?
- 4 Big Experiments:
 - ATLAS
 - CMS
 - ALICE
 - LHCb

USJ is CMS member

CMS Experiment

- Compact Muon Solenoid
- Layers:
 - Tracker
 - Electromagnetic Calorimeter
 - Hadron Calorimeter
 - The magnet
 - The muon detectors
- Layered DCS (Detector Control System)
- One control view

Supervisory Control And Data Acquisition (SCADA) Functional Architecture

Tool: Wincc-OA

SCADA Challenges

- Controlling complex distributed systems
- Generating meaningful alarms
- Archiving
- Failure processes and Safety measurements
- Security issues (Stuxnet)

Blockchain is not Bitcoin — it's far more

- Not all blockchains are equal.
- Bitcoin operates within a network of anonymous participants
- Authorization in Enterprise blockchains helps manage interactions between known parties.
- Enterprise blockchains meet four fundamental requirements:
 - accountability,
 - privacy,
 - scalability
 - security.

Industrial Control Systems (ICS) and Blockchain

- 91% of ICS devices possess a medium or high-risk vulnerability.
- Decentralized structure of Blockchain and built-in verification make it a perfect fit for the IoT environment including Industrial Control Systems (ICS).
- Blockchain technology offer the smart industry ecosystem the following:
 - A way to record and verify each device.
 - Cross-check suppliers and devices
 - Confidentiality of sensitive information.
 - Trusted proof of sensor readings allowing any device to be verified and deactivated if a breach is detected.

Scope of the PhD

- Study the SCADA system in the CMS experiment
- Build a generic model for the SCADA system
- Build a framework using Enterprise Blockchain to integrate security in the new model

Challenges:

- SCADA systems are domain-specific with private industrial protocols
- Blockchain is beyond the capabilities of the existing equipment
- Performance and speed are key factors in a control system

Conclusion

Conclusion

- Distributed Ledger Technologies : Bitcoin, Ethereum, Hyperledger
- Blockchain Challenges and Attacks
- Malicious Blockchain Applications
- Blockchain Potential Application in ICS
- Need of legal and regulatory frameworks to manage blockchains and their uses

Questions?