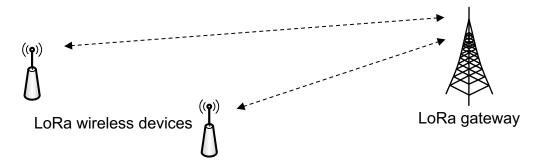




# Enabling Low Power Wide Area Networks in the Internet of Things with LoRa


9<sup>èmes</sup> journées de la recherche de l'USJ 21-22 Juin 2018

Samer Lahoud Melhem El Helou

Faculté d'Ingénierie - ESIB



# LoRa Technology in Numbers



- LoRa is a recent wireless communication technology with unprecedented performance
  - Coverage: distance between transmitter and receiver can go up to tens of kilometers
  - Power consumption: a device can work for five years on a single battery charge
  - Device cost: a LoRa chip costs around 5 USD
  - Scalability: a Lora gateway supports thousands of connected devices



# How Does LoRa Achieve Very Large Coverage?

The maximum coupling loss (MCL) defines the maximum loss the system can cope with between a transmitter and a receiver:

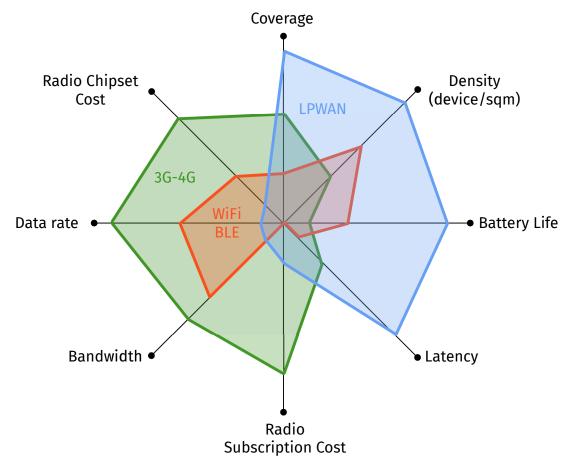
MCL = transmit power  $(P_{Tx})$  - receiver sensitivity

- How to improve coverage?
  - Increase P<sub>Tx</sub>
  - Decrease receiver sensitivity
    - Reduce receiver noise figure
    - Reduce channel bandwidth
    - Reduce required signal-to-noise ratio
      - → Chirp Spread Spectrum



#### **How does LoRa Consume Low Power?**

- Idle devices enter in deep sleep mode. They:
  - shut down their transceiver
  - keep track of time and scheduled events via a low-power oscillator (that is kept running)
- Devices wake up from deep sleep to:
  - transmit data uncoordinatedly
  - open receive windows either periodically, or only after an uplink transmission




# **How does LoRa Reduce Device Complexity and Cost?**

- Reduce device complexity and cost through:
  - limiting message size
  - using simple channel codes
  - not using complex modulations or multiple-input multiple-output (MIMO) transmissions
  - supporting only half-duplex operation
  - on-chip integrating power amplifier (since transmit power is limited)

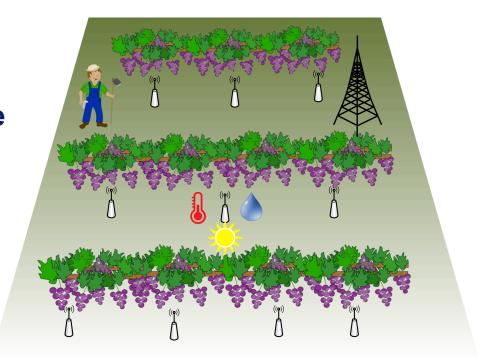


## **LPWAN Sweet Spot**



 Low Power Wide Area Networks (LPWAN) complement traditional cellular technologies and short-range wireless technologies



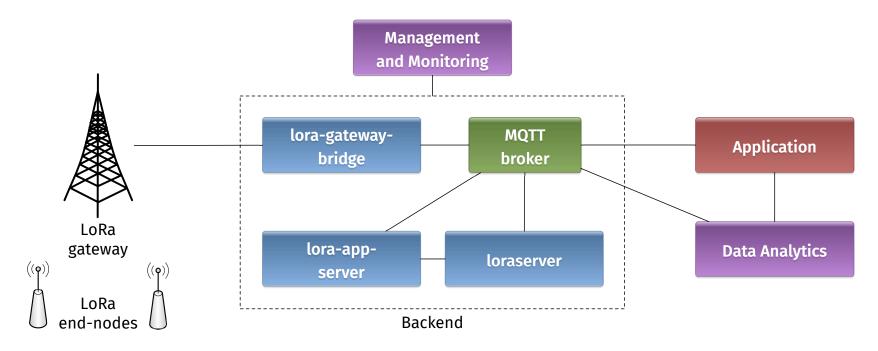

# **LPWAN Applications in the Internet of Things**

- Smart grid
  - Connected electricity meters
- Industrial asset monitoring
  - Supply chain, airports
- Critical infrastructure monitoring
  - Transport, water installation
- Smart agriculture
  - Irrigation, fertilizing
- Smart Cities
  - Traffic control, environmental monitoring



# LISA: Long-range IoT for Smart Agriculture

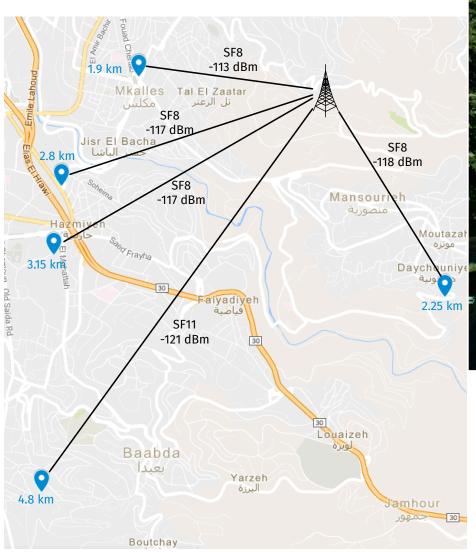
- Project launched at ESIB-USJ in Sept. 2016
- Scientific objectives cover networking and agriculture topics
  - Deploy and test LoRa for agriculture
  - Automate measurement process of microclimates under vines
  - Test and assess different pruning lengths




LISA members:

Marc Ibrahim, Samer Lahoud, Melhem El Helou, Maroun Chamoun, Rima Kilany Chamoun, Yolla Ghorra Chamoun, Maya Kharrat Sarkis



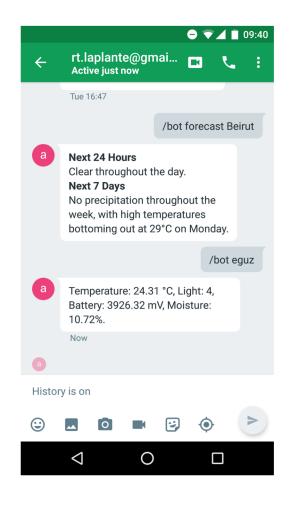

#### First LoRa Pilot in Lebanon at ESIB



- Course on IoT technologies, engineering projects, and research studies
- Participation in the PoC with Libatel for OGERO
  - Deployment at Château Kefraya
- Participation in the FOSS4I international research project
  - Development of a smart irrigation module controlled via LoRa



### **LoRa Drive Test**








- View the live dashboard
  - https://goo.gl/jksaJW
- Connect with our plant
  - Twitter: @allo\_laplante
  - Hangout: rt.laplante@gmail.com and type /bot eguz



