

A review of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Lebanon: Environmental and human contaminants

Khalil Helou¹, Mireille Harmouche-Karaki¹, Sara Karake¹, Jean-François Narbonne²

¹ Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076 – Riad Solh Beirut 1107 2180 – Lebanon khalil.helou@usj.edu.lb, mireille.harmouche@usj.edu.lb, sarakarake27@gmail.com

² Honorary Professor, University of Bordeaux, France narbonne.jf@gmail.com

Hotspots of organochlorine pesticides and polychlorobipphenyls in Lebanon

Hotspots of OCP contamination: Agricultural areas

➤ 1st: the Bekaa plain (formerly the attic of Rome)

≥2nd: Akkar

≥3rd: coastal plain

Persistent Organic Pollutants & Health Environement Profile – MoE 2005

Pesticides problem

• Despite legislations, Lebanon is still incapable to control the smuggling of OCPs, excessive usage, storage and discarding of pesticides, particularly by untrained farmers and unskilled municipal personnel

Example of agricultural room in Akkar

Hotspots of OCP contamination: Agricultural waters

Streams and rivers flowing into agricultural fields are potentially contaminated sites. Gravity irrigation washes OCPs out of agricultural fields and introduces them into surface water and groundwater

PCB Hotspots

EDL:

- 7 thermal power plants
- 12 hydro power plants
- Baushrieh repair workshop

Insulating oils in
Lebanon's Electricity
Company – Electricité
du Liban (EDL) are the
major known sources of
PCBs in Lebanon.

PCB Hotspots

EDL operates also:

• **58 substations** including 22,551 distribution transformers

1,130 transformers
continue to reveal
contamination, with PCB
residues at levels
exceeding 50 ppm
(unpublished updated info
— MoE)

PCB Situation

Prior to 2006:

- PCB contaminated equipment of EDL used to be disposed of haphazardly or dismantled and sold as scrap.
- PCB oil used to be dumped recklessly or sold as fuel.
- No incineration kilns or dedicated landfills for PCB waste in Lebanon

Capacitors & transformers piles: Bauchrieh

Priority Setting & Validation Workshop Report, UNDP/MoE; ELARD; ECODIT – Aug 2005

Research on OCPs and PCBs (1999 – 2017)

12 studies

PCB in Tripoli marine sediments

OCPs in Akkar river sediments (2002)

The only study on river sediments ever done in Lebanon

Akkar River 2 μg/kg dw	CCME (µg/kg	`	
River Sediments	Conc.	ISQG	PEL
mean HCB	0.03	-	-
mean pp'-DDE	2.02	1.42	6.75
mean pp'-DDT	2.21	1.19	4.77
mean ΣDDT	3.84	-	-

- Levels of HCB were low.
- DDT mean level was higher than DDE indicating its recent use despite its ban. It was probably used in both sides of the border.
- Lindane and HCHs were not detected

OCPs in Groundwater

- Four studies carried out till now.
- Sampling by pumping in amber glass bottles (1.5 2.5 L)
- Analysis SPE + LGC + MS

A. Kouzayha, A. et al., Occurrence of Pesticide Residues in Lebanon's Water Resources, Bull Environ Contam Toxicol (2013) 91:503–509

El-Osmani, R., et al. *Solid Phase Extraction of Organochlorine Pesticides Residues in Groundwater (Akkar Plain, North Lebanon)*. Int. J. Environ. Res., 8(4):903-912, Autumn 2014

Lobna Youssef, et al. *Occurrence and levels of pesticides in South Lebanon water*, Chemical Speciation & Bioavailability, 2015 Vol. 27, No. 2, 62–70,

Chbib Chaza, Net Sopheak, Hamzeh Mariam, Dumoulin David, Ouddane Baghdad, Baroudi Moomen, Assessment of pesticide contamination in Akkar groundwater, northern Lebanon, Environ Sci Pollut Res, published online March 06, 2017

Location

N sites

N Samples

Samp. Method

OCPs/PCBs

ΣCyclodienes

ΣOCPs

Aldrin

DDD

DDE

DDT

ΣDDT

Chlorobenzilate

Dieldrin

B-Endosulfan

Endosulfan sulfate

Endrin

Endrin Aldehyde

OCPs in Groundwater

Akkar

15

30

Grab Duplicates

Rang

1760 - 39170

2610 - 58870

40-9330

90-19170

nd-77

330-1290

610-19980

50-9560

20-640

nd

nd-80

nd-0.19

Av

18430

33560

2300

11142

30

340

11840

2721

280

nd

48

83.05

500

30

100

100

100

100

30

100

100

100

100

1875 1875 1979 1989 1989 1989 1989 1989 1989 1989			Faculté de Pharmacie	Thomasic, Universit St.	
	2011–2012	2012	2012	2015	EU MRL
	ng/L	ng/L	ng/L	ng/L	ng/L
Authors	Kouzhaya, A. et	El-Osmani, R. et	Youssef, L. et al.	Chbib, C. et al.	

Hasbani

3

11

Grab

av

nq

2.80

28.5

nq

Rang

nd-nq

nq-9,6

nq-144.8

nd-nq

av

280

260

1111

791

1290

al.

Akkar

10

30

Grab Triplicates

rang

nd-720

nd-690

140-6090

nd-1570

nd-2470

al.

Dennyeh, Terbol,

Abbassieh

15

Grab

rang

nd-0.7

0.9 - 2.2

0.7 - 1.3

nd-1.5

av

0.4

1.6

1.1

0.6

Authors

Location

N sites

N samples

Samp. Method

OCPs/PCBs

Endrin Ketone

HCB

α-HCH

в-нсн

у-НСН

δ-ΗСΗ

ΣΗCΗ

Heptachlor Epox. A

Heptachlor Epox. B

 Σ Heptachlor Epox.A + B

Heptachlor

Methoxychlor

Tetradifon

ng/L

100

100

100

100

100

100

30

30

30

30

100

NA

USJ 1875 1875 1875 1875 1875 1875 1875 1875	OCPs	s in Groun	dwater	•

Kouzhaya, A. et

al.

Dennyeh Terbol

Abbassieh

15

Grab

rang

1.2-1.6

nd-0.5

av

1.5

0.2

1875 1875 1875				
	2011 2012	2012	2012	

Chbib, C. et al.

Akkar

15

30

Grab Duplicates

Rang

150-1650

20-5760

30-360

100-3160

nd-70

150-9350

1390 - 25120

nd-6130

nd-250

Av

592

1787

160

1304

17

3268

9005

3375

57

USJ 1875	OCIS	III GIVUI	nuwater	Faculté de Pharmacie	Facility (K. Ohmmacie, University
	2011–2012	2012	2012	2015	EUM

El-Osmani, R. et al.

Akkar

10

30

Grab Triplicates

rang

nd-2150

nd-6420

nd-720

nd-770

nd-1350

nd-7860

nd-120

nd-1610

nd-2050

av

240

1460

126

311

423

2420

64

679

740

Youssef, L. et

al.

Hasbani

3

11

Grab

av

0.52

nq

0.88

Rang

nq-1.1

nd-nq

nd-3.4

القريس يوسفي على				Pharmacie Pharmacie
	2011–2012	2012	2012	2015
	ng/L	ng/L	ng/L	ng/L

OCPs in Surface Waters

- Four studies carried out till now, each including several rivers
- Sampling by pumping in amber glass bottles (1.5 2.5 L)
- Analysis SPE, LGC, MS

A. Kouzayha, A. et al., Occurrence of Pesticide Residues in Lebanon's Water Resources, Bull Environ Contam Toxicol (2013) 91:503–509

Lobna Youssef, et al. *Occurrence and levels of pesticides in South Lebanon water*, Chemical Speciation & Bioavailability, 2015 Vol. 27, No. 2, 62–70,

R. Badr, et al. Water quality assessment of Hasbani River in South-Lebanon: microbiological and chemical characteristics and their impact on the ecosystem, Journal of Global Biosciences Vol. 3(2), 2014, pp. 536-551

Al Ashi Aisha, et al, *Monitoring of 45 Pesticides in Lebanese Surface Water using Polar Organic Chemical Integrative Sampler (POCIS)*, Ocean Sci. J. (2017) 52(3):455-466

20

60

Grab Triplicates

av

64.75

2.03

24,46

1.02

Rang

35.43-121.61

1.12-4.99

3.26-107.39

0.17 - 2.70

2013 ng/L

Youssef, L. et al.

SPE + GC-MS

Hasbani

3

15

Grab

av

nq

1.29

23.25

nq

0.6

nq

nq

Rang

nd-nq

nq-5.6

nq-135.6

nd-nq

nq-0.7

nd-nq

nd-ng

	Surface water Studies				
	20	11–2012 ng/L	2013 ng/L		
Authors	Kou	ızayha, A. et al.	Badr, R. et al.		
Method	SI	PE + GC-MS	SPE + GC-MS		
Location	Litani Orontes		Hasbani – Wazzani ^a		

Grab Duplicates

Rang

nd-3.4

nd-2.7

nd-9.2

nd-9.5

nd-4.7

nd-8.6

4

av

1

1.1

5.3

7.8

3

6

Rang

< LOO

< LOQ

< LOO

< LOQ

CCME PEL (the level above which more than 50% adverse effects occur in marine environments) for β-

N sites

N samples

Samp. Method

OCPs/PCBs

PCB₅₂e

Aldrin

DDD

DDEf

DDT

B-Endosulfang

Endosulfan sulfate

HCB

Heptachlor Epox. A

Heptachlor Epox. B

Lindane

Endosulfan = 3 ng/L

EPA Max for PCB52 = 1.7 ng/ 1.8

EPA Max for DDE = 8.3 ng/L 6.6

Surface water Studies

	Sui	lace w	atti k	iuuics		
			2	2014 ng/L		
Authors			As	shi, A. et al.		
Method		SPE -	LP-GC-M	S/MS Triplic	ate samples	
Location	Ibı	rahim	Qa	raoun]	Hasbani
N sites	1 1 1			1		
N samples	72 36 36		36			
Samp. Method	POCIS Triplicate					
OCPs/PCBs	av	Rang	av	Rang	av	Rang
DDE	23.16	nd-137.66	1.73	nd-8.63	15.43	nd-31.79
EPA Max for DDE = 8.3 n	g/L					
	2014 ng/g of POCIS sorbent phase					
Authors	Ashi, A. et al.					
Method		SPE -	+ LP-GC-M	S/MS Triplic	ate samples	
			_		_	

	2014 ng/g of POCIS sorbent phase						
Authors			A	shi, A. et al.			
Method		SPE	+ LP-GC-N	IS/MS Triplica	ate samples		
Location	Ib	rahim	Qa	raoun	I	Hasbani	
N sites	1 1			1			
N samples		72 36			36		
Samp. Method		POCIS Triplicate					
OCPs/PCBs	av	Rang	av	Rang	av	Rang	
β-Endosulfan	26.67	nd-143.38	5504.90	nd-27201.42	50728.13	nd-142672.08	
НСВ	3.22	0.71-10.46	13.14	2.18-51.38	7.44	3.02-18.01	
Heptachlor	2.72	nd-8.13	2.42	1–5.63	8.16	4–17.44	

Soil Contamination (2004)

Journées de la Recherche

Only one study on ΣDDT (pp'DDT+pp'DDD+pp'DDE)

Detected Σ DDT range:

$$23 \le x \le 1190 \text{ ng/g}$$

Range of concentrations	Number of samples (n= 113)	Percent
$n.d. \le 2.5 \text{ ng/g}$	64	56.64 %
Very Low $2.5 \le x \le 200 \text{ ng/g}$	44	38.94 %
$Low 200 \le x \le 500 \text{ ng/g}$	3	2.65 %
$Medium 500 \le x \le 1000 \text{ ng/g}$	0	0.00 %
High $1000 \le x \le 2000 \text{ ng/g}$	2	1.77 %

DDE was the predominant form of DDT residues indicating at that time an ancient application of DDT (2004)

50 Kilometers

Human Biomonitoring

Faculté de Pharmacie

One study on human milk published in 1999

- N = 32 milk samples from nursing mothers in Beirut while in hospital (Milk fat extract. + SPE + GC)
- 47 μ g/l \leq [DD5] \leq 1563 μ g/L
- [DDE] mean valu 34µg/L

OCP type	Detected n = 32	% Detection
DDT	10	31 %
DDD	6	19 %
DDE	31	97 %
αНСН	3	9 %
R+v HCH	1	3 %

• No mention **floo**

FAO/WHO (2005) stated that Σ DDT MRL for Human Milk is of 20 µg/l wm (FAO & WHO, 2005)

Positive correlation with [DDE]

consumption of
high fat meat
and tuna fish

consumption	C
of poultry	
products	

consumption
of vegetable
oils

Aldrin	2	6 %
Endrin	1	3 %
Dieldrin	2	6 %

- Samples of blood anthropometric measures – BP – questionnaires (FFQ – 24 hrs recall – socio-demographic)
- Measured OCPs were HCB, β-HCH, DDT, and DDE
- 6 PCBi were measured (PCBs 28, 52, 101, 138, 153, 180)

First human biomonitoring of OCPs and PCBs in blood in Lebanon

Mireille Harmouche-Karaki, Joseph Matta, Khalil Helou, Yara Mahfouz, Nicole Fakhoury-Sayegh, Jean-François Narbonne, *Serum concentrations of polychlorinated biphenyls (PCBs) in a Lebanese population: ENASB study*, Environ Sci Pollut Res (2017) 24:3705–3716

Mireille Harmouche-Karaki, Joseph Matta, Khalil Helou, Yara Mahfouz, Nicole Fakhoury-Sayegh, Jean-François Narbonne, *Serum concentrations of selected organochlorine pesticides in a Lebanese population and their associations to sociodemographic, anthropometric and dietary factors: ENASB study*, Environ Sci Pollut Res Accepted: 31 May 2017

PCB congener

ng/g lipids

HCRa

OCPs and PCBs in serum of 316 employees and students of USJ

Min.

< LOD

Arithm.

Mean

Geom.

Mean

 7.1 ± 0.6

50th

percent.

5.8

95th

percent.

32.0

Max.

85.1

псь	20.0	7.1 - 0.0	_	LOD	2.0	<i>32.</i> 0	05.1
βНСН	50.0	8.6 ± 0.6	-	< LOD	7.6	45.0	154.9
$\mathrm{DDT^{b}}$	49.7	2.1 ± 0.3	-	< LOD	2.0	5.0	15.8
DDEc	50.0	18.9 ± 0.9	-	< LOD	17.3	180.0	630.9
ΣDDE, DDT ^d	-	21	-	< LOD	-	-	646.7
PCB ₂₈	56.3	0.9	2.2	< LOD	2.2	5.6	18.2
PCB ₅₂	58.2	0.3	0.6	< LOD	0.3	1.5	17.4
PCB ₁₀₁	57.6	0.6	1.3	< LOD	0.6	3.6	17.4
PCB ₁₃₈	59.2	1.9	7.1	< LOD	8.2	16.7	50.1
PCB ₁₅₃	58.2	3.0	16.5	< LOD	16.4	45.9	87.1
PCB_{180}	58.2	3.7	24.7	< LOD	24.1	66.8	170.0
$\boxed{\Sigma \ PCB_{138}PCB_{153}PCB_{180}}$	-	9.0	48.3	< LOD	52.6	128.0	302.0
ΣΡCΒi	-	10.3	52.4	< LOD	57.9	135.0	339.0

 $\frac{0}{0} >$

LOD

(n=316)

50.0

of departure of non-cancer risk BEPOD = 3384 ng/g lipids

bBiomonitoring equivalents BE of 1E-05 cancer risk = 300 ng/g lipids (EPA)
cBiomonitoring equivalents BE of 1E-05 cancer risk = 500 ng/g lipids (EPA)
dBiomonitoring equivalents reference dose of non-cancer risk BERfD = 5000 ng/g lipids; Biomonitoring equivalents point of departure of non-cancer risk BEPOD = 16000 ng/g lipids

aBiomonitoring equivalents reference dose of non-cancer risk BERfD = 340 ng/g lipids; Biomonitoring equivalents point

Human Biomonitoring

One study on PCB and OCP in human blood The "ENASB - USJ" study (2013 – 2015)

PCB results

- PCB congeners 138, 153, and 180 predominated and accounted for 15.7, 25.2, and 34.1% of Σ 6PCB.
- The higher contribution of PCB 180 to the detriment of PCB 153 could be due to the contamination in PCBs by transformers in the power sector
- [PCB] not age related
- The highest levels were lower than critical limits set by HBM I and II.

Mireille Harmouche-Karaki, Joseph Matta, Khalil Helou, Yara Mahfouz, Nicole Fakhoury-Sayegh, Jean-François Narbonne, *Serum concentrations of polychlorinated biphenyls (PCBs) in a Lebanese population: ENASB study*, Environ Sci Pollut Res (2017) 24:3705–3716

Comparison of PCB and OCP results between the ENASB-USJ study and the NHANES

PCBs & OCPs	LSB concentrations in serum (ng/g lipids)	LSB years	NHANES concentrations in serum (ng/g lipids)	NHANES years
PCB ₂₈	0.9	(2013-2015)	0.27	(2013-2014)
PCB ₅₂	0.3	(2013-2015)	0.3	(2007-2008)
PCB ₁₀₁	0.6	(2013-2015)	0.3	(2007-2008)
PCB ₁₅₃	3.0	(2013-2015)	0.26	(2013-2014)
PCB ₁₈₀	3.6	(2013-2015)	0.26	(2013-2014)
НСВ	7.1 ± 0.6	(2013-2015)	1.3	(2013-2014)
βНСН	8.6 ± 0.6	(2013-2015)	1.3	(2013-2014)
DDT	2.1 ± 0.3	(2013-2015)	1.3	(2013-2014)
DDE	18.9 ±0.9	(2013-2015)	1.8	(2013-2014)

Conclusions

- OCPs still are a significant problem despite legislations. Smuggling, lack of law enforcement and ignorance of the farmers are the principal cause.
- OCPs in tested groundwater and surface waters > MRL, obviously non tested groundwater and surface waters in hotspots areas are contaminated too.
- Academic work increased since 2010, but still insufficient.
- Obviously PCBs in sea sediments in major ports (Beiut Sidon – Jounieh …) > MRL

- No possibility to link existing data to assess human exposure (lack of data)
- Limited Human biomonitoring on serum

References

- The situation of children and women in Lebanon 1995 UNICEF, Beirut
- S. M. Dagher, R. S. Talhouk, S. S. Nasrallah, R. I. Tannous and S. M. Mroue, *Relationship of dietary intake to DDE residues in breast milk of nursing mothers in Beirut*. Food Additives and Contaminants, 1999, Vol. 16, No. 7, 307±312
- Isam I. Bashour, Shawky M. Dagher, Gisele I. Chammas, Arlette E. Lteif, and Nasri S. Kawar, *DDT Residues in Lebanese Soils*, Journal Of Environmental Science And Health Part B—Pesticides, Food Contaminants, and Agricultural Wastes Vol. B39, No. 2, pp. 273–283, 2004
- Priority Setting & Validation Workshop Report, UNDP/MoE; ELARD; ECODIT – Aug 2005
- Persistent Organic Pollutants & Health Environement Profile MoE Lebanon 2005
- National Implementation plans for the Management of Persistent Organic Pollutants Final Report 2006 MoE Lebanon.
- A. Kouzayha, A. Al Ashi, R. Al Akoum, M. Al Iskandarani, H. Budzinski,
 F. Jaber, Occurrence of Pesticide Residues in Lebanon's Water Resources,
 Bull Environ Contam Toxicol (2013) 91:503–509

References

- R. Badr, H. Holail and Z. Olama, *Water quality assessment of Hasbani River in South-Lebanon:* microbiological and chemical characteristics and their impact on the ecosystem, Journal of Global Biosciences Vol. 3(2), 2014, pp. 536-551
- El-Osmani, R., Net, S., Dumoulin, D., Baroudi, M., Bakkour, H. and Ouddane, B *Solid Phase Extraction of Organochlorine Pesticides Residues in Groundwater (Akkar Plain, North Lebanon)*. Int. J. Environ. Res., 8(4):903-912, Autumn 2014
- Lobna Youssef, Ghassan Younes, Abir Kouzayha & Farouk Jaber, *Occurrence and levels of pesticides in South Lebanon water*, Chemical Speciation & Bioavailability, 2015 Vol. 27, No. 2, 62–70,
- Dima Merhaby, Sopheak Net, Jalal Halwani, Baghdad Ouddane, Organic pollution in surficial sediments of Tripoli harbour, Lebanon, www.elsevier.com/locate/marpolbul (2015)
- Lara Nasreddine, Maria Rehaime, Zeina Kassaify, Roula Rechmany, Farouk Jaber, *Dietary exposure to pesticide residues from foods of plant origin and drinks in Lebanon*, Environ Monit Assess (2016) 188: 485
- MoE/UNEP/GEF (2017) National Assessment of POPs Impacts and Management - Pesticides, Industrial and Unintentionally Released. Lebanon

References

- MoE/UNEP/GEF (2017) National Implementation Plan on Persistent Organic Pollutants. Lebanon
- Chbib Chaza, Net Sopheak, Hamzeh Mariam, Dumoulin David, Ouddane Baghdad, Baroudi Moomen, *Assessment of pesticide contamination in Akkar groundwater, northern Lebanon*, Environ Sci Pollut Res, published online March 06, 2017
- Al Ashi Aisha, Wael Hneine, Samia Mokh, Marie-Hélène Devier, Hélèn Budzinski, and Farouk Jaber, *Monitoring of 45 Pesticides in Lebanese Surface Water using Polar Organic Chemical Integrative Sampler (POCIS)*, Ocean Sci. J. (2017) 52(3):455-466
- Mireille Harmouche-Karaki, Joseph Matta, Khalil Helou, Yara Mahfouz, Nicole Fakhoury-Sayegh, Jean-François Narbonne, Serum concentrations of polychlorinated biphenyls (PCBs) in a Lebanese population: ENASB study, Environ Sci Pollut Res (2017) 24:3705–3716
- Mireille Harmouche-Karaki, Joseph Matta, Khalil Helou, Yara Mahfouz, Nicole Fakhoury-Sayegh, Jean-François Narbonne, Serum concentrations of selected organochlorine pesticides in a Lebanese population and their associations to sociodemographic, anthropometric and dietary factors: ENASB study, Environ Sci Pollut Res Accepted: 31 May 2017