En | Ar

040DYS2L7

Cognition mathématique : pathologies, évaluation et remédiation

Cette unité d’enseignement s’inscrit dans le semestre 6 du cursus de la formation initiale des orthophonistes. Il s’agit d’une matière obligatoire. Elle vise à assurer à l’étudiant des connaissances théoriques de base sur le développement atypique de la pensée mathématique. Le cours vise également à développer chez l’étudiant une démarche clinique d’évaluation et d’interprétation orthophonique des différents troubles mathématiques et du traitement du nombre, ainsi qu’une estimation de leurs répercussions scolaires chez les enfants et les adolescents.


Temps présentiel : 15 heures


Charge de travail étudiant : 50 heures


Méthode(s) d'évaluation : Examen final, Travaux pratiques contrôlés


Référence :
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Arlington, VA: APA Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22 ( 6), 701–714. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology, 130 (2), 224–237. Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16 (1), 35–46. Badian, N. (1999). Persistent Arithmetic, Reading, or Arithmetic and Reading Disability. Annals of Dyslexia, 49, 45–70. Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: incidence in a population-based birth cohort, 1976-82, Rochester, Minn. Ambulatory Pediatrics, 5 (5), 281–289. Booth, J.L. & Siegler, R.S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79 (4), 1016 – 1031. Cirino, P., Fuchs, L., Elias, J., Powell, S. & Schumacher, R. (2015). Cognitive mathematical profiles for different forms of learning difficulties. Journal of Learning Difficulties, 48 (2), 156 – 175. Cowan, R. & Powell, O. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106 (1), 214. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. Dellatolas, G., & Von Aster, V. (2006). Zareki-R, Batterie pour l’évaluation du traitement des nombres et du calcul chez l’enfant. Paris: ECPA. Desoete, A., & Grégoire, J. (2006). Numerical competence in young children and in children with mathematics learning disabilities. Learning and Individual Differences, 16 (4), 351–367. Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non- symbolic comparison tasks in kindergarten? Findings from a longitudinal study. Issue British Journal of Educational Psychology, 82 (1), 64–81. Fayol, M., Perros, H. & Seron, X. (2004). Les représentations numériques : caractéristiques, troubles, développement. Développement cognitif et troubles des apprentissages. Marseille: SOLAL Ferreira, F., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. (2012). Explaining school mathematics performance from symbolic and nonsymbolic magnitude processing: similarities and differences between typical and low-achieving children. Psychology and Neuroscience, 5 (1), 37–46. Fischer, B., Köngeter, A., & Hartnegg, K. (2008). Article Effects of Daily Practice on Subitizing , Visual Counting, and Basic Arithmetic Skills. Optometry & Vision Development, 39(1), 30–34. Geary,D.C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114 (2), 345–362 Geary,D.C., Hoard, M. K., Nugent, L., & Byrd-craven, J. (2008). Developmental Neuropsychology Development of Number Line Representations in Children With Mathematical Learning Disability. Memory, 37–41. Geary, D.C., Nicholas, A., Li, Y., Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109 (5), 680 – 693. Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: prevalence and demographic features. Developmental Medicine and Child Neurology, 38 (1), 25–33. INSERM. (2007). Dyslexie, Dysorthographie, Dyscalculie. Bilan des données scientifiques. Paris. Jenßen, L., Dunekacke, S., Eid, M., & Blömeke, S. (2015). The Relationship of Mathematical Competence and Mathematics Anxiety. Zeitschrift Für Psychologie, 223 (1), 31–38. Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I. Siapati, S., Annika, G., Kafantaris, I., Charalambidou, I. Dellatolas, G. & Von Aster, M. ( 2004). An epidemiological study of number processing and mental calculation in Greek schoolchildren. Journal of Learning Disabilities, 37 (5), 377 – 388. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition, 93 (2), 99–125. Landerl, K., Fussenegger, B., Moll,K. & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103 (3), 309 – 324. Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103 (4), 546–65. Lafay, A. (2016). Déficits cognitifs numériques impliqués dans la dyscalculie développementale. Thèse de doctorat en médecine expérimentale, Université Laval, Québec - Canada Lewis, C., Hitch, G. J., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35 (2), 283–92. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability. Child Development, 82 (4), 1224–37. Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M.-P. (2011). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 37–41. Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K. & Nuerk, H.C. (2009) Basic number processing deficits in developmental dyscalculia: evidence from eye tracking. Cognitive Development, 24 (4), 371 – 386. Moradpour, S., Rostamy-malkhalifeh, M., Behzadi, M. H., & Shahvarani, A. (2015). The Study of the Relationship between Mothers’ Anxiety with the Mathematical Performance and Students’ Anxiety, 2015 (1), 1–6. Ostad, S. (1998). Developmental differences in solving simple arithmetic word problems and simple number-fact problems: a comparison of mathematically normal and mathematically disabled childern. Mathematical Cognition, 4 (1), 1 – 19. Passolunghi, M. C. (2011). Cognitive and Emotional Factors in Children with Mathematical Learning Disabilities. International Journal of Disability, Development and Education, 58 (1), 61–73. Rosselli, M. & Matute, E. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28 (1), 539 – 560. Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102 (3), 361–95. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 2 (14), 280–291. Shalev, R., Manor, O., Kerem, B., Ayali, M., Badichi, N. Friedlander, Y., Gros-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34 (1), 59 – 65. Shalev, R. (2004). Developmental Dyscalculia. Journal of Child Neurology, 19, 765 – 771. Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year follow-up. Developmental Medicine & Child Neurology, 47 (2), 121–125. Share, D. L., Moffitt, T. E., & Silva, P. a. (1988). Factors Associated with Arithmetic-and-Reading Disability and Specific Arithmetic Disability. Journal of Learning Disabilities, 21 (5), 313–320. Starkey, P. & Cooper, R. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13 (4), 399 – 420. Van Viersen, S., Slot, E.M., Kroesbergen, E.H, Van’t Noordende, J.E. & Leseman, P. (2013). The added value of eye-tracking in diagnosing dyscalculia: a case study. Frontiers in Psychology, 4, 679. Von Aster, M., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developemental 139, Medicine & Child Neurology, 49, 868–873. Xenidou-Dervou, I., Gimore, C., Van der Schoot, M., & Van Lieshout, E. (2015). The developmental onset of symbolic approximation: beyond non-symbolic representations, the language of numbers matters. Frontiers in Psychology, 6, 487

Les prérequis de ce cours sont les suivants
 Cognition mathématique: développement normal de la pensée logique et mathématique
Planification
JourPeriodeSalle
Sam 04/09/202108:00 - 12:00
Sam 18/09/202108:00 - 12:00
Sam 02/10/202108:00 - 12:00
Ce cours est proposé dans les diplômes suivants
 Diplôme d'orthophonie (Premier cycle)